Investigation of chemical power sources on an automated electronic load with controlled parameters


Cite item

Full Text

Abstract

hybrid installations for converting fuel energy into electricity are a promising way to provide humanity with affordable energy resources. However, the issue of obtaining reagents (hydrogen and oxygen) with high purity remains one of the most urgent. In this work, the energy characteristics of a hydrogen-oxygen fuel cell in combination with a water electrolyzer were investigated. Membrane-electrode assemblies were formed consisting of a modified membrane based on polytetrafluoroethylene with a platinum-containing component (Pt(30%)/C), as well as an anode and cathode made of carbon fabric and porous nickel doped with technical carbon and graphene. The structural characteristics of the material were studied using the scanning electron microscopy method. For the first time the investigation of hydrogen-oxygen membrane-electrode assemblies energy characteristics was carried out on an automated electronic load AKIP-1375/1E with embedded software. In the developed hydrogen-oxygen fuel cell, a more affordable commercial polytetrafluoroethylene-based membrane was used as a solid polymer electrolyte instead of the Nafion membrane, which significantly reduced the cost of developed MEA. As a result of the tests carried out, it was found that the maximum specific power is demonstrated by elements constructed on the basis of an anode and a cathode made of porous nickel modified with graphene.

About the authors

M. V Lebedeva

MIREA – Russian Technological University

V. A Golovacheva

MIREA – Russian Technological University

N. A Kopylova

MIREA – Russian Technological University

O. A Dulina

MIREA – Russian Technological University

I. V Bakeeva

MIREA – Russian Technological University

N. A Yashtulov

MIREA – Russian Technological University

References

  1. Goel M., Sen G. Climate Action and Hydrogen Economy: Technologies Shaping the Energy Transition, Springer, Singapore, 2024. 309 p.
  2. Kumar S., Agarwal A.K., Khandelwal B., Singh P. Ammonia and Hydrogen for Green Energy Transition, Springer, Singapore, 2024. 392 p.
  3. Xing Y. Modeling and Control Strategies for a Fuel Cell System, Springer Nature, Switzerland, 2023. 173 p.
  4. Лебедева М.В., Антропов А.П., Рагуткин А.В., Зайцев Н.К., Яштулов Н.А. Разработка электродных наноматериалов для щелочного электролиза воды // Теоретические основы химической технологии. 2021. Т. 55. № 5. С. 642 – 651.
  5. Kumar S.S., Lim H. An overview of water electrolysis technologies for green hydrogen production // Energy Reports. V. 8. № 10. Р. 13793 – 13813.
  6. Park J. Kwon O., Oh H.-M., Jeong S., So Y., Park J., Jang H., Yang S., Baek J., Kim G., Park T. Optimizing design of catalyst layer structure with carbon-supported platinum weight ratio mixing method for proton exchange membrane fuel cells // Energy. 2024. Vol. 291. P. 130363.
  7. Лебедева М.В., Крапивко А.Л., Дулина О.А., Ленский М.С., Яштулов Н.А. Энергоэффективные нанокомпозитные мембранно-электродные блоки для химических источников тока // Chemical Bulletin. 2023. Т. 6. № 2. С. 19 – 28.
  8. Yashtulov N.A., Zaitcev N.K., Lebedeva M.V., Patrikeev L.N. New polymer-graphene nanocomposite electrodes with platinum-palladium nanoparticles for chemical power sources // Express Polymer Letters. 2019. Vol. 13. № 8. P. 739 – 748.
  9. Лебедева М.В., Рагуткин А.В., Сидоров И.М., Яштулов Н.А. Снижение наводораживания материалов мембранно-электродных блоков генераторов водорода // Тонкие химические технологии. 2023. Т. 18. № 5. С. 461 – 470.
  10. Лебедева М.В., Антропов А.П., Рагуткин А.В., Яштулов Н.А. Разработка прототипов мембранно-электродных блоков на основе нанокомпозитов с платиной для источников энергии // Computational Nanotechnology. 2019. Т. 6. № 4. С. 56 – 59.
  11. Антропов А.П., Лебедева М.В., Рагуткин А.В., Зайцев Н.К., Яштулов Н.А. Энергоэффективность нанокомпозитных мембранно-электродных блоков генерации водорода // Вестник Технологического университета. 2021. Т. 24. № 12. С. 73 – 78.
  12. Krasnova A.O., Glebova N.V., Kastsova A.G., Pelageikina A.O., Redkov A.V., Tomkovich M.V., Nechitailov A.A. Stability of graphene/nafion composite in pem fc electrodes // Nanomaterials. 2024. Vol. 14. № 11. P. 922.
  13. Rey-Raap N., dos Santos-Gómez L., Arenillas A. Carbons for fuel cell energy generation // Carbon. 2024. V. 228. P. 11929.
  14. Guterman V.E., Pustovaya L.E., Guterman A.V., Vysochina L.L. Borohydride synthesis of the Pt x -Ni/C electrocatalysts and investigation of their activity in the oxygen electroreduction reaction // Russian Journal of Electrochemistry. 2007. Vol. 43. № 9. Р. 1091 – 1096.
  15. Антропов А.П., Рагуткин А.В., Лебедева М.В., Яштулов Н.А. Нанокомпозитные микромощные альтернативные источники энергии для электронной техники // Теплоэнергетика. 2021. № 1. С. 21 – 29.
  16. Lebedeva M.V., Antropov A.P., Golovacheva V.A., Erasov V.S., Yashtulov N.A. Metal-Polymer Functional Materials for Hydrogen-Oxygen Fuel Cells with Enhanced Performance // Applied Mechanics and Materials. 2023. Vol. 912. P. 101 – 106.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).