Predicting composition of a functional food product using computer simulation
- Authors: Nikitina M.A.1, Chernukha I.M.1, Artamonova M.P.2, Qusay A.T.2,3
-
Affiliations:
- V.M. Gorbatov Federal Research Center for Foods Systems
- Russian Biotechnological University (Rosbiotech)
- University of Hama
- Issue: Vol 7, No 4 (2024)
- Pages: 543-550
- Section: Articles
- URL: https://journals.rcsi.science/2618-9771/article/view/311682
- DOI: https://doi.org/10.21323/2618-9771-2024-7-4-543-550
- ID: 311682
Cite item
Full Text
Abstract
Keywords
About the authors
M. A. Nikitina
V.M. Gorbatov Federal Research Center for Foods Systems
Email: imcher@inbox.ru
26, Talalikhin str., 109316, Moscow
I. M. Chernukha
V.M. Gorbatov Federal Research Center for Foods Systems
Email: imcher@inbox.ru
26, Talalikhin str, 109316, Moscow
M. P. Artamonova
Russian Biotechnological University (Rosbiotech)
Email: imcher@inbox.ru
11, Volokolamsk highway, 125080, Moscow
A. T. Qusay
Russian Biotechnological University (Rosbiotech); University of Hama
Email: imcher@inbox.ru
11, Volokolamsk highway, 125080, Moscow; Assi Square, Hama, Syria
References
- Palatini, P., Saladini, F., Mos, L., Vriz, O., Ermolao, A., Battista, F. et al. (2024). Healthy overweight and obesity in the young: Prevalence and risk of major adverse cardiovascular events. Nutrition, Metabolism and Cardiovascular Diseases, 34(3), 783–791. https://doi.org/10.1016/j.numecd.2023.11.013
- Kivimäki, M., Kuosma, E., Ferrie, J. E., Luukkonen, R., Nyberg, S. T., Alfredsson, L. et al. (2017). Overweight, obesity, and risk of cardiometabolic multimorbidity: Pooled analysis of individual-level data for 120813 adults from 16 cohort studies from the USA and Europe. The Lancet Public Health, 2(6), e277-e285. http://doi.org/10.1016/S2468-2667(17)30074-9
- Eckel, N., Meidtner, K., Kalle-Uhlmann, T., Stefan, N., Schulze, M.B. (2016). Metabolically healthy obesity and cardiovascular events: A Systematic review and meta-analysis. European Journal of Preventive Cardiology, 23(9), 956–966. http://doi.org/10.1177/2047487315623884
- Nayak, B.N., Singh, R.B., Buttar, H.S. (2022). Biochemical and dietary functions of tryptophan and its metabolites in human health. Chapter in a book: Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases. Academic Press, 2022. https://doi.org/10.1016/B978-0-12-819815-5.00003-3
- Gupta, S.K., Vyavahare, S., Blanes, I.L.D., Berger, F., Isales, C., Fulzele, S. (2023). Microbiota-derived tryptophan metabolism: Impacts on health, aging, and disease. Experimental Gerontology, 183, Article 112319. https://doi.org/10.1016/j.exger.2023.112319
- Wang, J., Liu, J., John, A., Jiang, Y., Zhu, H., Yang, B. et al. (2022). Structure identification of walnut peptides and evaluation of cellular antioxidant activity (2022). Food Chemistry, 388, Article 132943. https://doi.org/10.1016/j.foodchem.2022.132943
- Kalaycıoğlu, Z., Erim, F.B. (2017). Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chemistry, 221, 496–507. https://doi.org/10.1016/j.foodchem.2016.10.084
- Larsson, S.C., Woolf, B., Gill, D. (2023). Appraisal of the causal effect of plasma caffeine on adiposity, type 2 diabetes, and cardiovascular disease: Two sample mendelian randomisation study. BMJ Medicine, 2, Article e000335. https://doi.org/10.1136/bmjmed2022-000335
- Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W. (2018). Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016–1022. https://doi.org/10.1016/j.ifacol.2018.08.474
- Santner, T.J., Williams, B.J., Notz, W.I. (2018). The Design and Analysis of Computer Experiments. New York: Springer, 2018. https://doi.org/10.1007/978-1-4939-8847-1
- Cabeza-Gil, I., Ríos-Ruiz, I., Martínez, M.Á., Calvo, B., Grasa, J. (2023). Digital twins for monitoring and predicting the cooking of food products: A case study for a French crêpe. Journal of Food Engineering, 359, Article 111697. https://doi.org/10.1016/j.jfoodeng.2023.111697
- Karadeniz, A.M., Arif, İ., Kanak A., Ergün S. (May 26–29, 2019). Digital Twin of eGastronomic Things: A Case Study for Ice Cream Machines. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019. https://doi.org/10.1109/ISCAS.2019.8702679
- Kannapinn, M., Pham, M.K., Schäfer, M. (2022). Physics-based digital twins for autonomous thermal food processing: Efficient, non-intrusive reduced-order modeling. Innovative Food Science and Emerging Technologies, 81, Article 103143. https://doi.org/10.1016/j.ifset.2022.103143
- Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C. (2015). A survey on engineering approaches for self-adaptive systems. Pervasive and Mobile Computing, 17(Part B), 184–206. https://doi.org/10.1016/j.pmcj.2014.09.009
- Defraeye, T., Shrivastava, C., Berry, T., Verboven, P., Onwude, D., Schudel, S. et al. (2021). Digital twins are coming: Will we need them in supply chains of fresh horticultural produce? Trends in Food Science and Technology, 109, 245–258. https://doi.org/10.1016/j.tifs.2021.01.025
- Lv, Z., Xie, S. (2021). Artificial intelligence in the digital twins: State of the art, challenges, and future research topics. Digital Twin, 1–12. https://doi.org/10.12688/digitaltwin.17524.1
- Attaran, M. (2017). The Internet of Things: Limitless opportunities for business and society. Journal of Strategic Innovation and Sustainability, 12(1), 10–29.
- Hou, L., Wu, S., Zhang, G., Tan, Y., Wang, X. (2020). Literature review of digital twins applications in construction workforce safety. Applied Sciences, 11(1), Article 339. https://doi.org/10.3390/app11010339
- Shu, Z., Wan, J., Zhang, D. (2016). Cloud-integrated cyber–physical systems for complex industrial applications. Mobile Networks and Applications, 21, 865–878. https://doi.org/10.1007/s11036-015-0664-6
- Henrichs, E., Noack, T., Pinzon Piedrahita, A.M., Salem, M.A., Stolz, J., Krupitzer, C. (2022). Can a byte improve our bite? An analysis of digital twins in the food industry. Sensors, 22(1), Article 115. https://doi.org/10.3390/s22010115
- Lisitsyn, A.B., Chernukha, I.M., Nikitina, M.A. (2023). Cyber-physical systems in food production chain. Theory and Practice of Meat Processing, 8(4), 316–325. https://doi.org/10.21323/2414-438X2023-8-4-316-325
- Rajak, P., Ganguly, A., Adhikary, S., Bhattacharya, S. (2023). Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14, Article 100776. https://doi.org/10.1016/j.jafr.2023.100776
- Alfian, G., Rhee, J., Ahn, H., Lee, J., Farooq, U., Ijaz, M.F., Syaekhoni, M.A. (2017). Integration of RFID, wireless sensor networks, and data mining in an e-pedigree food traceability system. Journal of Food Engineering, 212, 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.008
- Yu, S., Liu, X., Tan, Q., Wang, Z., Zhang, B. (2024). Sensors, systems and algorithms of 3D reconstruction for smart agriculture and precision farming: A review. Computers and Electronics in Agriculture, 224(9), Article 109229. https://doi.org/10.1016/j.compag.2024.109229
- Mon, T., ZarAung, N. (2020). Vision based volume estimation method for automatic mango grading system. Biosystems Engineering, 198(10), 338–349. https://doi.org/10.1016/j.biosystemseng.2020.08.021
- Yimyam, P., Clark, A.F. (February 3–6, 2016). 3D reconstruction and feature extraction for agricultural produce grading. In Proceedings of the 8th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 2016. https://doi.org/10.1109/KST.2016.7440482
- Guo, P., Dusadeerungsikul, P.O., Nof, S.Y. (2018). Agricultural cyber physical system collaboration for greenhouse stress management. Computers and Electronics in Agriculture, 150, 439–454. https://doi.org/10.1016/j.compag.2018.05.022
- Ahmad, I., Pothuganti, K. (September 10–12, 2020). Smart field monitoring using ToxTrac: A cyber–physical system approach in agriculture. In Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2020. https://doi.org/10.1109/ICOSEC49089.2020.9215282
- Skobelev, P., Laryukhin, V., Simonova, E., Goryanin, O., Yalovenko, V., Yalovenko, O. (July 27–28, 2020). Developing a smart cyber–physical system based on digital twins of plants. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 2020. https://doi.org/10.1109/WorldS450073.2020.9210359
- Siemens AG. (2018). Customization in the Food and Beverage Industry. Spotlight on the Digital Twin. White Paper. 2018. Retrieved from https://www.foodengineeringmag.com/ext/resources/WhitePapers/FE_Whitepaper_CustomizationFood-and-Beverage.pdf Accessed June 20, 2024.
- Mclean, V., Redmond, W. (2021). Mars and Microsoft Work together to Accelerate Mars’ Digital Transformation and Reimagine Business Operations, Associate Experience and Consumer Engagement. Press Release. 2021. Retrieved from https://news.microsoft.com/2021/05/13/mars-and-microsoft-work-togetherto-accelerate-mars-digital-transformation-and-reimagine-business-operations-associate-experience-and-consumer-engagement/ Accessed June 20, 2024.
- Патент № 2015620557. Пищевые продукты. Никитина М. А., Лисицын А. Б., Захаров А. Н., Сусь Е. Б., Пилюгина С. А., Дыдыкин А. С., Устинова Опубл. 12.02.2015. https://doi.org/10.1017/CBO9780511702396.063
- Cauchy, A.-L. (1847). Méthode générale pour la résolution des systèmes d’équations simultanées. Comptes rendus de l’Académie des Sciences, XXV, 536– 538. https://doi.org/10.1017/CBO9780511702396.063
- Поляк, Б.Т. (1963). Градиентные методы минимизации функционалов, решения уравнений и неравенств. Автореф. дис. канд. физ-мат. наук. М.: МГУ. — 9 с.
- Канторович, Л.В., Акилов, Г.П. (2004). Функциональный анализ. СПб.: Невский диалект, 2004.
- Bhadani, R. (2021). Nonlinear Optimization in R using nlopt. https://doi.org/10.48550/arXiv.2101.02912
- Лисицын, А.Б., Чернуха, И.М., Никитина, М.А. (2021). Конструирование многокомпонентных продуктов питания. Москва: Издательство «МГУПП», 2021.
- Chernukha, I.M., Nikitina, M.A., Aslanova, M.A., Qusay, A.T. (2022). Systemic approach in the development of functional foods for various noncommunicable diseases. Theory and Practice of Meat Processing, 7(3), 164–176. https://doi.org/10.21323/2414-438X2022-7-3-164-176
- Никитина, М.А., Чернуха, И.М., Кусай, А.Т. (2022). Мониторинг жизненного цикла пищевого продукта, созданного на основе цифрового двойника. Всё о мясе, 4, 22–26. https://doi.org/10.21323/2071-2499-2022-4-22-26
- Асланова, М.А., Деревицкая, О.К., Дыдыкин, А.С., Беро, А.Л., Солдатова, Н.Е. (2024). Разработка технологии функциональных мясных кулинарных изделий с использованием кардионутрициологических принципов. Все о мясе, 1, 36–39. https://doi.org/10.21323/2071-2499-2024-1-36-39
- Макарова, А.А., Лисин, П.А., Пасько, О.В. (2021). Проектирование аналоговых мясных полуфабрикатов с применением симплекс-метода. Индустрия питания, 6(2), 50–58. https://doi.org/10.29141/2500-1922-2021-6-2-6
- Скурихин, И.М., Нечаев, А.П. (1991). Все о пище с точки зрения химика. Москва: Высшая школа, 1991.
- Рогов, И.А., Жаринов, А.И., Воякин, М.П. (2008). Химия пищи. Принципы формирования качества мясопродуктов. Санкт-Петербург: Издательство РАПП, 2008.
- Оганян, Н.Г., Добровольский, В.И., Семенова, А.А., Васильева, Т.В. (2023). Метрологические аспекты при оценке соответствия мясной продукции установленным требованиям. Контроль качества продукции, 3, 38–43.
- Oganyan, N.G., Semenova, A.A., Dobrovolskiy, V.I. (September 14–16, 2021). Metrological aspects of the safety and quality of meat products. Journal of Physics: Conference Series, 2192, Article 012022. https://doi.org/10.1088/1742-6596/2192/1/012022
Supplementary files
