Food waste as a raw material for production of polyhydroxyalkanoates: State and prospects
- Authors: Kuznetsova A.P.1, Al-Shekhadat R.I.1
-
Affiliations:
- ITMO University
- Issue: Vol 7, No 1 (2024)
- Pages: 31-43
- Section: Articles
- URL: https://journals.rcsi.science/2618-9771/article/view/311333
- DOI: https://doi.org/10.21323/2618-9771-2024-7-1-31-43
- ID: 311333
Cite item
Full Text
Abstract
About the authors
A. P. Kuznetsova
ITMO University
Email: al-shekhadat@itmo.ru
Tel.: +7–911–132–76–58
R. I. Al-Shekhadat
ITMO University
Email: al-shekhadat@itmo.ru
References
- Sirohi, R., Pandey, J.P., Gaur, V.K., Gnansounou, E., Sindhu, R. (2020). Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresource Technology, 311, Article 123536. https://doi.org/10.1016/j.biortech.2020.123536
- Pakalapati, H., Chang, C.-K., Show, P. L., Arumugasamy, S. K., Lan, J. C.-W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282–292. https://doi.org/10.1016/j.jbiosc.2018.03.016
- Polyhydroxyalkanoate Market Size and Share Analysis — Growth Trends and Forecasts (2024–2029) Retrieved from https://www.mordorintelligence.com/industry-reports/polyhydroxyalkanoate-market Accessed September 18, 2023
- Markets and Markets. (2022). Global Polyhydroxyalkanoate (PHA) Market by Type (Short chain length, Medium Chain Lenth), Production Methods (Sugar Fermentation, Vegetable Oil Fermentation), Application (Packaging and Food Services, Biomedical) and Region — Global Forecast to 2027. Retrieved from https://www.researchandmarkets.com/reports/5241294/global-polyhydroxyalkanoate-pha-market-by Accessed September 18, 2023
- Пресс-служба Министерства сельского хозяйства Российской Федерации: Завод по производству биопластика из пшеницы построят в ОЭЗ « Липецк». (2019). Министерство сельского хозяйства Российской Федерации. Электронный ресурс https://mcx.gov.ru/press-service/regions/zavodpo-proizvodstvu-bioplastika-iz-pshenitsy-postroyat-v-oez-lipetsk/. Дата доступа 25.09.2023
- Dalton, B., Bhagabati, P., De Micco, J., Padamati, R. B., O’Connor, K. (2022). A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts, 12(3), Article 319. https://doi.org/10.3390/catal12030319
- Koller, M., Gasser, I., Schmid, F., Berg, G. (2011). Linking ecology with economy: Insights into polyhydroxyalkanoate-producing microorganisms. Engineering in Life Sciences, 11(3), 222–237. https://doi.org/10.1002/elsc.201000190
- Kannah, R.Y., Kumar, M.D., Kavitha, S., Banu, J.R., Tyagi, V.K., Rajaguru, P. et al. (2022). Production and recovery of polyhydroxyalkanoates (PHA) from waste streams — A review. Bioresource Technology, 366, Article 128203. https://doi.org/10.1016/j.biortech.2022.128203
- Allegue, L. D., Ventura, M., Melero, J. A., Puyol, D. (2022). Unraveling PHA production from urban organic waste with purple phototrophic bacteria via organic overload. Renewable and Sustainable Energy Reviews, 166, Article 112687. https://doi.org/10.1016/j.rser.2022.112687
- Rajvanshi, J., Sogani, M., Kumar, A., Arora, S., Syed, Z., Sonu, K. et al. (2023). Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy. Science of The Total Environment, 874, Article 162441. https://doi.org/10.1016/j.scitotenv.2023.162441
- Saratale, R. G., Cho, S.-K., Kadam, A. A., Ghodake, G. S., Kumar, M., Bharagava, R. N. et al. (2022). Developing microbial co-culture system for enhanced Polyhydroxyalkanoates (PHA) production using acid pretreated lignocellulosic biomass. Polymers, 14(4), Article 726. https://doi.org/10.3390/polym14040726
- Park, S. J., Ahn, W. S., Green, P. R., Lee, S. Y. (2001). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnology and Bioengineering, 74(1), 82–87. https://doi.org/10.1002/bit.1097
- Amini, M., Yousefi-Massumabad, H., Younesi, H., Abyar, H., Bahramifar, N. (2020). Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. Journal of Environmental Chemical Engineering, 8(1), Article 103588. https://doi.org/10.1016/j.jece.2019.103588
- Rangel, C., Carvalho, G., Oehmen, A., Frison, N., Lourenço, N. D., Reis, M. A. M. (2023). Polyhydroxyalkanoates production from ethanoland lactate-rich fermentate of confectionary industry effluents. International Journal of Biological Macromolecules, 229, 713–723. https://doi.org/10.1016/j.ijbiomac.2022.12.268
- Tamis, J., Lužkov, K., Jiang, Y., van Loosdrecht, M. C. M., Kleerebezem, R. (2014). Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. Journal of Biotechnology, 192(A), 161–169. https://doi.org/10.1016/j.jbiotec.2014.10.022
- Amaro, T. M. M. M., Rosa, D., Comi, G., Iacumin, L. (2019). Prospects for the use of whey for Polyhydroxyalkanoate (PHA) production. Frontiers in Microbiology, 10, Article 992. https://doi.org/10.3389/fmicb.2019.00992
- Berwig, K. H., Baldasso, C., Dettmer, A. (2016). Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process. Bioresource Technology, 218, 31–37. https://doi.org/10.1016/j.biortech.2016.06.067
- Bosco, F., Cirrincione, S., Carletto, R., Marmo, L., Chiesa, F., Mazzoli, R. et al. (2021). PHA production from cheese whey and “Scotta”: Comparison between a consortium and a pure culture of Leuconostoc mesenteroides. Microorganisms, 9(12), Article 2426. https://doi.org/10.3390/microorganisms9122426
- Israni, N., Venkatachalam, P., Gajaraj, B., Varalakshmi, K. N., Shivakumar, S. (2020). Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation. Journal of Environmental Management, 255, Article 109884. https://doi.org/10.1016/j.jenvman.2019.109884
- Costa, S. G. V. A. O., Lépine, F., Milot, S., Déziel, E., Nitschke, M., Contiero, J. (2009). Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology, 36(8), 1063–1072. https://doi.org/10.1007/s10295-009-0590-3
- Salgaonkar, B. B., Mani, K., Bragança, J. M. (2019). Sustainable bioconversion of cassava waste to Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense strain E3. Journal of Polymers and the Environment, 27(2), 299–308. https://doi.org/10.1007/s10924-018-1346-9
- Hierro-Iglesias, C., Chimphango, A., Thornley, P., Fernández-Castané, A. (2022). Opportunities for the development of cassava waste biorefineries for the production of polyhydroxyalkanoates in Sub-Saharan Africa. Biomass and Bioenergy, 166, Article 106600. https://doi.org/10.1016/j.biombioe.2022.106600
- Chaleomrum, N., Chookietwattana, K., Dararat, S. (2014). Production of PHA from cassava starch wastewater in sequencing batch reactor treatment system. APCBEE Procedia, 8, 167–172. https://doi.org/10.1016/j.apcbee.2014.03.021
- Pozo, C., Martı́nez-Toledo, M. V., Rodelas, B., González-López, J. (2002). Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechı́n (wastewater from olive oil mills) as primary carbon source. Journal of Biotechnology, 97(2), 125–131. https://doi.org/10.1016/S0168-1656(02)00056-1
- Beccari, M., Bertin, L., Dionisi, D., Fava, F., Lampis, S., Majone, M. et al. (2009). Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic-aerobic process: Bioproduction of PHA from olive mill effluents. Journal of Chemical Technology and Biotechnology, 84(6), 901–908. https://doi.org/10.1002/jctb.2173
- Cerrone, F., Sánchez-Peinado M. del, M., Juárez-Jimenez, B., González-López, J., Pozo, C. (2010). Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): Polyhydroxyalkanoates (PHAs) production by Azotobacter strains. Journal of Microbiology and Biotechnology, 20(3), 594–601.
- Kovalcik, A., Kucera, D., Matouskova, P., Pernicova, I., Obruca, S., Kalina, M. et al. (2018). Influence of removal of microbial inhibitors on PHA production from spent coffee grounds employing Halomonas halophila. Journal of Environmental Chemical Engineering, 6(2), 3495–3501. https://doi.org/10.1016/j.jece.2018.05.028
- Obruca, S., Petrik, S., Benesova, P., Svoboda, Z., Eremka, L., Marova, I. (2014). Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Applied Microbiology and Biotechnology, 98(13), 5883–5890. https://doi.org/10.1007/s00253-014-5653-3
- Kang, B.-J., Jeon, J.-M., Bhatia, S. K., Kim, D.-H., Yang, Y.-H., Jung, S. et al. (2023). Two-stage bio-hydrogen and polyhydroxyalkanoate production: Upcycling of spent coffee grounds. Polymers, 15(3), Article 681. https://doi.org/10.3390/polym15030681
- Saratale, R.G., Cho, S.-K., Saratale, G.D., Kadam, A. A., Ghodake, G. S., Kumar, M. et al. (2021). A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresource Technology, 325, Article 124685. https://doi.org/10.1016/j.biortech.2021.124685
- Follonier, S., Goyder, M. S., Silvestri, A.-C., Crelier, S., Kalman, F., Riesen, R. et al. (2014). Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. International Journal of Biological Macromolecules, 71, 42–52. https://doi.org/10.1016/j.ijbiomac.2014.05.061
- Kovalcik, A., Pernicova, I., Obruca, S., Szotkowski, M., Enev, V., Kalina, M. et al. (2020). Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. Food and Bioproducts Processing, 124, 1–10. https://doi.org/10.1016/j.fbp.2020.08.003
- Verlinden, R. A., Hill, D. J., Kenward, M. A., Williams, C. D., Piotrowska-Seget, Z., Radecka, I. K. (2011). Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express, 1(1), Article 11. https://doi.org/10.1186/2191-0855-1-11
- Costa, C. F. F. A., Amorim, C. L., Duque, A. F., Reis, M. A. M., Castro, P. M. L. (2022). Valorization of wastewater from food industry: Moving to a circular bioeconomy. Reviews in Environmental Science and Bio/Technology, 21(1), 269–295. https://doi.org/10.1007/s11157-021-09600-1
- Mannina, G., Presti, D., Montiel-Jarillo, G., Carrera, J., Suárez-Ojeda, M. E. (2020). Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresource Technology, 297, Article 122478. https://doi.org/10.1016/j.biortech.2019.122478
- Gecim, G., Aydin, G., Tavsanoglu, T., Erkoc, E., Kalemtas, A. (2021). Review on extraction of polyhydroxyalkanoates and astaxanthin from food and beverage processing wastewater. Journal of Water Process Engineering, 40, Article 101775. https://doi.org/10.1016/j.jwpe.2020.101775
- Sanli, H., Canakci, M., Alptekin, E. (May 12–13, 2011). Characterization of waste frying oils obtained from different facilities. World Renewable Energy Congress — Sweden. Linköping, 2011. https://doi.org/10.3384/ecp11057479
- Nitin, S. (2017). Investigation of waste frying oil as a green alternative fuel: An approach to reduce NOx emission. Chapter in a book: Biofuels and Bioenergy (BICE2016). Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-47257-7_11
- Ciesielski, S., Możejko, J., Pisutpaisal, N. (2015). Plant oils as promising substrates for polyhydroxyalkanoates production. Journal of Cleaner Production, 106, 408–421. https://doi.org/10.1016/j.jclepro.2014.09.040
- Pernicova, I., Kucera, D., Nebesarova, J., Kalina, M., Novackova, I., Koller, M. et al. (2019). Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresource Technology, 292, Article 122028. https://doi.org/10.1016/j.biortech.2019.122028
- Sangkharak, K., Khaithongkaeo, P., Chuaikhunupakarn, T., Choonut, A., Prasertsan, P. (2021). The production of polyhydroxyalkanoate from waste cooking oil and its application in biofuel production. Biomass Conversion and Biorefinery, 11(5), 1651–1664. https://doi.org/10.1007/s13399-020-00657-6
- Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P. (2013). Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochemistry, 48(10), 1532–1552. https://doi.org/10.1016/j.procbio.2013.07.010
- Dionisi, D., Carucci, G., Papini, M. P., Riccardi, C., Majone, M., Carrasco, F. (2005). Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Research, 39(10), 2076–2084. https://doi.org/10.1016/j.watres.2005.03.011
- Ntaikou, I., Peroni, C.V., Kourmentza, C., Ilieva, V. I., Morelli, A., Chiellini, E. et al. (2014). Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. Journal of Biotechnology, 188, 138–147. https://doi.org/10.1016/j.jbiotec.2014.08.015
- Rodríguez G., J. E., Brojanigo, S., Basaglia, M., Favaro, L., Casella, S. (2021). Efficient production of polyhydroxybutyrate from slaughterhouse waste using a recombinant strain of Cupriavidus necator DSM 545. Science of The Total Environment, 794, Article 148754. https://doi.org/10.1016/j.scitotenv.2021.148754
- Основные показатели охраны окружающей среды. Статистический бюллетень. (2021). Федеральная служба государственной статистики (Росстат), Москва, 2021.
- Бережная, Е.А. (2021). Современное состояние и перспективы переработки молочной сыворотки. Вестник науки, 3(1(34)), 131–135.
- Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., Gullo, M. (2020). Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 104(7), 2749–2764. https://doi.org/10.1007/s00253-020-10408-2
- Akhlaq, S., Singh, D., Mittal, N., Srivastava, G., Siddiqui, S., Faridi, S. A. et al. (2023). Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods: A short review. Polymer Bulletin, 80(6), 5965–5997. https://doi.org/10.1007/s00289-022-04406-9
- Batcha, A. F.M., Prasad, D. M. R., Khan, M. R., Abdullah, H. (2014). Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source. Bioprocess and Biosystems Engineering, 37(5), 943–951. https://doi.org/10.1007/s00449-013-1066-4
- Bhola, S., Arora, K., Kulshrestha, S., Mehariya, S., Bhatia, R. K., Kaur, P. et al. (2021). Established and emerging producers of PHA: Redefining the possibility. Applied Biochemistry and Biotechnology, 193(11), 3812–3854. https://doi.org/10.1007/s12010-021-03626-5
- Koller, M. (2015). Recycling of Waste streams of the biotechnological Poly(hydroxyalkanoate) production by haloferax mediterranei on whey. International Journal of Polymer Science, 2015, Article 370164. https://doi.org/10.1155/2015/370164
- Gahlawat, G., Kumari, P., Bhagat, N. R. (2020). Technological advances in the production of Polyhydroxyalkanoate biopolymers. Current Sustainable/Renewable Energy Reports, 7(3), 73–83. https://doi.org/10.1007/s40518-020-00154-4
- Oliveira, C. S. S., Silva, M. O. D., Silva, C. E., Carvalho, G., Reis, M. A. M. (2018). Assessment of protein-rich cheese whey waste stream as a nutrients source for low-cost mixed microbial PHA production. Applied Sciences, 8(10), Article 1817. https://doi.org/10.3390/app8101817
- Kee, S. H., Ganeson, K., Rashid, N. F. M., Yatim, A. F. M., Vigneswari, S., Amirul, A.-A. A. et al. (2022). A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel, 321, Article 124039. https://doi.org/10.1016/j.fuel.2022.124039
- Ветошкин, А. Г. (2019). Техника и технология обращения с отходами жизнедеятельности: Учебное пособие. В 2-х частях. Ч. 2. Переработка и утилизация промышленных отходов. Москва, Вологда: Инфра-Инженерия, 2019.
- Комарова, Е.В., Буряков, А.В., Суржко, О.А. (2017). Получение биогаза из отходов плодоовощных консервных заводов. Инновационная наука, 5, 58–61.
- Andler, R., Valdés, C., Urtuvia, V., Andreeßen, C., Díaz-Barrera, A. (2021). Fruit residues as a sustainable feedstock for the production of bacterial polyhydroxyalkanoates. Journal of Cleaner Production, 307, Article 127236. https://doi.org/10.1016/j.jclepro.2021.127236
- Govil, T., Wang, J., Samanta, D., David, A., Tripathi, A., Rauniyar, S. et al. (2020). Lignocellulosic feedstock: A review of a sustainable platform for cleaner production of nature’s plastics. Journal of Cleaner Production, 270, Article 122521. https://doi.org/10.1016/j.jclepro.2020.122521
- Rayasam, V., Chavan, P., Kumar, T. (2020). Polyhydroxyalkanoate synthesis by bacteria isolated from landfill and ETP with pomegranate peels as carbon source. Archives of Microbiology, 202(10), 2799–2808. https://doi.org/10.1007/s00203-020-01995-9
- Umesh, M., Sankar, S. A., Thazeem, B. (2021). Fruit Waste as Sustainable Resources for Polyhydroxyalkanoate (PHA) Production. Chapter in a book: Bioplastics for Sustainable Development. Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-1823-9_7
- Basso, D., Weiss-Hortala, E., Patuzzi, F., Baratieri, M., Fiori, L. (2018). In deep analysis on the behavior of grape marc constituents during hydrothermal carbonization. Energies, 11(6), Article 1379. https://doi.org/10.3390/en11061379
- Rebocho, A. T., Pereira, J. R., Freitas, F., Neves, L. A., Alves, V. D., Sevrin, C. et al. (2019). Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Applied Food Biotechnology, 6(1), 71–82. https://doi.org/10.22037/afb.v6i1.21793
- Pereira, J. R., Araújo, D., Freitas, P., Marques, A. C., Alves, V. D., Sevrin, C. et al. (2021). Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization. International Journal of Biological Macromolecules, 167, 85–92. https://doi.org/10.1016/j.ijbiomac.2020.11.162
- Umesh, M., Sarojini, S., Choudhury, D.D., Santhosh, A.S., Kariyadan, S. (2023). Food waste valorization for bioplastic production. Chapter in a book: Waste valorization for value-added products. Bentham Science Publishers, 2023. https://doi.org/10.2174/9789815123074123010013
- Matos, M., Cruz, R. A. P., Cardoso, P., Silva, F., Freitas, E. B., Carvalho, G. et al. (2021). Combined strategies to boost polyhydroxyalkanoate production from fruit waste in a three-stage pilot plant. ACS Sustainable Chemistry and Engineering, 9(24), 8270–8279. https://doi.org/10.1021/acssuschemeng.1c02432
- Silva, F., Matos, M., Pereira, B., Ralo, C., Pequito, D., Marques, N. et al. (2022). An integrated process for mixed culture production of 3-hydroxyhexanoate-rich polyhydroxyalkanoates from fruit waste. Chemical Engineering Journal, 427, Article 131908. https://doi.org/10.1016/j.cej.2021.131908
- Балабина, И. П., Проценко, Е. П., Алферова, Е. Ю., Косолапова, Н. И., Мирошниченко О. В. (2019). Утилизация органических отходов от сахарной промышленности компостированием. Экология урбанизированных территорий, 4, 27–33. https://doi.org/10.24411/1816-1863-2019-14027
- De Melo, R. N., de Souza Hassemer, G., Steffens, J., Junges, A., Valduga, E. (2023). Recent updates to microbial production and recovery of polyhydroxyalkanoates. 3 Biotech, 13(6), Article 204. https://doi.org/10.1007/s13205-023-03633-9
- Cesário, M. T., Raposo, R. S., de Almeida, M. C. M. D., van Keulen, F., Ferreira, B. S., da Fonseca, M. M. R. (2014). Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31(1), 104– 113. https://doi.org/10.1016/j.nbt.2013.10.004
- Zhang, L., Jiang, Z., Tsui, T.-H., Loh, K.-C., Dai, Y., Tong, Y. W. (2022). A review on enhancing Cupriavidus necator fermentation for Poly(3-hydroxybutyrate) (PHB) production from low-cost carbon sources. Frontiers in Bioengineering and Biotechnology, 10, Article 946085. https://doi.org/10.3389/fbioe.2022.946085
- Tripathi, A. D., Yadav, A., Jha, A., Srivastava, S. K. (2012). Utilizing of sugar refinery waste (Cane Molasses) for production of bio-plastic under submerged fermentation process. Journal of Polymers and the Environment, 20(2), 446–453. https://doi.org/10.1007/s10924-011-0394-1
- Rathika, R., Janaki, V., Shanthi, K., Kamala-Kannan, S. (2019). Bioconversion of agro-industrial effluents for polyhydroxyalkanoates production using Bacillus subtilis RS1. International Journal of Environmental Science and Technology, 16(10), 5725–5734. https://doi.org/10.1007/s13762-018-2155-3
- Razzaq, S., Shahid, S., Farooq, R., Noreen, S., Perveen, S., Bilal, M. (2022). Sustainable bioconversion of agricultural waste substrates into poly (3-hydroxyhexanoate) (mcl-PHA) by Cupriavidus necator DSM 428. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03194-6
- Albuquerque, M. G. E., Martino, V., Pollet, E., Avérous, L., Reis, M. A. M. (2011). Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. Journal of Biotechnology, 151(1), 66– 76. https://doi.org/10.1016/j.jbiotec.2010.10.070
- Garcia, C. V., Kim, Y.-T. (2021). Spent coffee grounds and coffee silverskin as potential materials for packaging: A review. Journal of Polymers and the Environment, 29(8), 2372–2384. https://doi.org/10.1007/s10924-021-02067-9
- Sisti, L., Celli, A., Totaro, G., Cinelli, P., Signori, F., Lazzeri, A. et al. (2021). Monomers, materials and energy from coffee by-products: A review. Sustainability, 13(12), Article 6921. https://doi.org/10.3390/su13126921
- Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M., Kaltschmitt, M. (2012). Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel, 96, 70–76. https://doi.org/10.1016/j.fuel.2012.01.023
- Głowacka, R., Górska, A., Wirkowska-Wojdyła, M., Wołosiak, R., Majewska, E., Derewiaka, D. (2019). The influence of brewing method on bioactive compounds residues in spent coffee grounds of different roasting degree and geographical origin. International Journal of Food Science and Technology, 54(11), 3008–3014. https://doi.org/10.1111/ijfs.14213
- Obruca, S., Benesova, P., Petrik, S., Oborna, J., Prikryl, R., Marova, I. (2014). Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochemistry, 49(9), 1409–1414. https://doi.org/10.1016/j.procbio.2014.05.013
Supplementary files
