Food waste as a raw material for production of polyhydroxyalkanoates: State and prospects

Cover Page

Cite item

Full Text

Abstract

The growing problem of environmental pollution by plastic leads to the search not only for the most promising biodegradable polymer, but also for optimal raw materials for its production. Polyhydroxyalkanoates (PHA) — biodegradable polymers with physical and mechanical properties close to traditional plastics — are considered a potential solution to this problem. The production of PHA can be organized according to the principles of circular bioeconomy through biotechnological processing of secondary raw materials to produce a product with added value. However, an important component of the expansion of PHA production is the need to find the most promising secondary raw materials for its production. The PHA market in Russia and the global market have been analyzed, highlighting the demand in the packaging and food industries, biomedicine and agroindustry as the fundamental factor for the growth of PHA production. Bibliographic analysis using the PRISMA scheme and VOSviewer program allowed identifying three main directions of PHA research: search for optimal secondary raw materials among food waste, analysis of challenges in PHA production, and the ecological and economic effects of its implementation. Promising types of secondary raw materials have been revealed: vegetable oil production waste, fruit and vegetable processing waste, dairy whey, sugar and starch industry waste, spent coffee grounds and coffee oils extracted from them. Advantages and disadvantages of using secondary raw materials, options for improving their use in the production of PHA, and the main strains-producers were determined. To optimize the cost and processes of PHA production, further studies of food waste are required, aimed at developing approaches to increase the polymer yield, including through the use of secondary raw material preparation processes, and the search for the most productive strains synthesizing PHA.

About the authors

A. P. Kuznetsova

ITMO University

Email: al-shekhadat@itmo.ru
Tel.: +7–911–132–76–58

R. I. Al-Shekhadat

ITMO University

Email: al-shekhadat@itmo.ru

References

  1. Sirohi, R., Pandey, J.P., Gaur, V.K., Gnansounou, E., Sindhu, R. (2020). Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresource Technology, 311, Article 123536. https://doi.org/10.1016/j.biortech.2020.123536
  2. Pakalapati, H., Chang, C.-K., Show, P. L., Arumugasamy, S. K., Lan, J. C.-W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282–292. https://doi.org/10.1016/j.jbiosc.2018.03.016
  3. Polyhydroxyalkanoate Market Size and Share Analysis — Growth Trends and Forecasts (2024–2029) Retrieved from https://www.mordorintelligence.com/industry-reports/polyhydroxyalkanoate-market Accessed September 18, 2023
  4. Markets and Markets. (2022). Global Polyhydroxyalkanoate (PHA) Market by Type (Short chain length, Medium Chain Lenth), Production Methods (Sugar Fermentation, Vegetable Oil Fermentation), Application (Packaging and Food Services, Biomedical) and Region — Global Forecast to 2027. Retrieved from https://www.researchandmarkets.com/reports/5241294/global-polyhydroxyalkanoate-pha-market-by Accessed September 18, 2023
  5. Пресс-служба Министерства сельского хозяйства Российской Федерации: Завод по производству биопластика из пшеницы построят в ОЭЗ « Липецк». (2019). Министерство сельского хозяйства Российской Федерации. Электронный ресурс https://mcx.gov.ru/press-service/regions/zavodpo-proizvodstvu-bioplastika-iz-pshenitsy-postroyat-v-oez-lipetsk/. Дата доступа 25.09.2023
  6. Dalton, B., Bhagabati, P., De Micco, J., Padamati, R. B., O’Connor, K. (2022). A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications. Catalysts, 12(3), Article 319. https://doi.org/10.3390/catal12030319
  7. Koller, M., Gasser, I., Schmid, F., Berg, G. (2011). Linking ecology with economy: Insights into polyhydroxyalkanoate-producing microorganisms. Engineering in Life Sciences, 11(3), 222–237. https://doi.org/10.1002/elsc.201000190
  8. Kannah, R.Y., Kumar, M.D., Kavitha, S., Banu, J.R., Tyagi, V.K., Rajaguru, P. et al. (2022). Production and recovery of polyhydroxyalkanoates (PHA) from waste streams — A review. Bioresource Technology, 366, Article 128203. https://doi.org/10.1016/j.biortech.2022.128203
  9. Allegue, L. D., Ventura, M., Melero, J. A., Puyol, D. (2022). Unraveling PHA production from urban organic waste with purple phototrophic bacteria via organic overload. Renewable and Sustainable Energy Reviews, 166, Article 112687. https://doi.org/10.1016/j.rser.2022.112687
  10. Rajvanshi, J., Sogani, M., Kumar, A., Arora, S., Syed, Z., Sonu, K. et al. (2023). Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy. Science of The Total Environment, 874, Article 162441. https://doi.org/10.1016/j.scitotenv.2023.162441
  11. Saratale, R. G., Cho, S.-K., Kadam, A. A., Ghodake, G. S., Kumar, M., Bharagava, R. N. et al. (2022). Developing microbial co-culture system for enhanced Polyhydroxyalkanoates (PHA) production using acid pretreated lignocellulosic biomass. Polymers, 14(4), Article 726. https://doi.org/10.3390/polym14040726
  12. Park, S. J., Ahn, W. S., Green, P. R., Lee, S. Y. (2001). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnology and Bioengineering, 74(1), 82–87. https://doi.org/10.1002/bit.1097
  13. Amini, M., Yousefi-Massumabad, H., Younesi, H., Abyar, H., Bahramifar, N. (2020). Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. Journal of Environmental Chemical Engineering, 8(1), Article 103588. https://doi.org/10.1016/j.jece.2019.103588
  14. Rangel, C., Carvalho, G., Oehmen, A., Frison, N., Lourenço, N. D., Reis, M. A. M. (2023). Polyhydroxyalkanoates production from ethanoland lactate-rich fermentate of confectionary industry effluents. International Journal of Biological Macromolecules, 229, 713–723. https://doi.org/10.1016/j.ijbiomac.2022.12.268
  15. Tamis, J., Lužkov, K., Jiang, Y., van Loosdrecht, M. C. M., Kleerebezem, R. (2014). Enrichment of Plasticicumulans acidivorans at pilot-scale for PHA production on industrial wastewater. Journal of Biotechnology, 192(A), 161–169. https://doi.org/10.1016/j.jbiotec.2014.10.022
  16. Amaro, T. M. M. M., Rosa, D., Comi, G., Iacumin, L. (2019). Prospects for the use of whey for Polyhydroxyalkanoate (PHA) production. Frontiers in Microbiology, 10, Article 992. https://doi.org/10.3389/fmicb.2019.00992
  17. Berwig, K. H., Baldasso, C., Dettmer, A. (2016). Production and characterization of poly(3-hydroxybutyrate) generated by Alcaligenes latus using lactose and whey after acid protein precipitation process. Bioresource Technology, 218, 31–37. https://doi.org/10.1016/j.biortech.2016.06.067
  18. Bosco, F., Cirrincione, S., Carletto, R., Marmo, L., Chiesa, F., Mazzoli, R. et al. (2021). PHA production from cheese whey and “Scotta”: Comparison between a consortium and a pure culture of Leuconostoc mesenteroides. Microorganisms, 9(12), Article 2426. https://doi.org/10.3390/microorganisms9122426
  19. Israni, N., Venkatachalam, P., Gajaraj, B., Varalakshmi, K. N., Shivakumar, S. (2020). Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation. Journal of Environmental Management, 255, Article 109884. https://doi.org/10.1016/j.jenvman.2019.109884
  20. Costa, S. G. V. A. O., Lépine, F., Milot, S., Déziel, E., Nitschke, M., Contiero, J. (2009). Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology, 36(8), 1063–1072. https://doi.org/10.1007/s10295-009-0590-3
  21. Salgaonkar, B. B., Mani, K., Bragança, J. M. (2019). Sustainable bioconversion of cassava waste to Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense strain E3. Journal of Polymers and the Environment, 27(2), 299–308. https://doi.org/10.1007/s10924-018-1346-9
  22. Hierro-Iglesias, C., Chimphango, A., Thornley, P., Fernández-Castané, A. (2022). Opportunities for the development of cassava waste biorefineries for the production of polyhydroxyalkanoates in Sub-Saharan Africa. Biomass and Bioenergy, 166, Article 106600. https://doi.org/10.1016/j.biombioe.2022.106600
  23. Chaleomrum, N., Chookietwattana, K., Dararat, S. (2014). Production of PHA from cassava starch wastewater in sequencing batch reactor treatment system. APCBEE Procedia, 8, 167–172. https://doi.org/10.1016/j.apcbee.2014.03.021
  24. Pozo, C., Martı́nez-Toledo, M. V., Rodelas, B., González-López, J. (2002). Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechı́n (wastewater from olive oil mills) as primary carbon source. Journal of Biotechnology, 97(2), 125–131. https://doi.org/10.1016/S0168-1656(02)00056-1
  25. Beccari, M., Bertin, L., Dionisi, D., Fava, F., Lampis, S., Majone, M. et al. (2009). Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic-aerobic process: Bioproduction of PHA from olive mill effluents. Journal of Chemical Technology and Biotechnology, 84(6), 901–908. https://doi.org/10.1002/jctb.2173
  26. Cerrone, F., Sánchez-Peinado M. del, M., Juárez-Jimenez, B., González-López, J., Pozo, C. (2010). Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): Polyhydroxyalkanoates (PHAs) production by Azotobacter strains. Journal of Microbiology and Biotechnology, 20(3), 594–601.
  27. Kovalcik, A., Kucera, D., Matouskova, P., Pernicova, I., Obruca, S., Kalina, M. et al. (2018). Influence of removal of microbial inhibitors on PHA production from spent coffee grounds employing Halomonas halophila. Journal of Environmental Chemical Engineering, 6(2), 3495–3501. https://doi.org/10.1016/j.jece.2018.05.028
  28. Obruca, S., Petrik, S., Benesova, P., Svoboda, Z., Eremka, L., Marova, I. (2014). Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Applied Microbiology and Biotechnology, 98(13), 5883–5890. https://doi.org/10.1007/s00253-014-5653-3
  29. Kang, B.-J., Jeon, J.-M., Bhatia, S. K., Kim, D.-H., Yang, Y.-H., Jung, S. et al. (2023). Two-stage bio-hydrogen and polyhydroxyalkanoate production: Upcycling of spent coffee grounds. Polymers, 15(3), Article 681. https://doi.org/10.3390/polym15030681
  30. Saratale, R.G., Cho, S.-K., Saratale, G.D., Kadam, A. A., Ghodake, G. S., Kumar, M. et al. (2021). A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresource Technology, 325, Article 124685. https://doi.org/10.1016/j.biortech.2021.124685
  31. Follonier, S., Goyder, M. S., Silvestri, A.-C., Crelier, S., Kalman, F., Riesen, R. et al. (2014). Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. International Journal of Biological Macromolecules, 71, 42–52. https://doi.org/10.1016/j.ijbiomac.2014.05.061
  32. Kovalcik, A., Pernicova, I., Obruca, S., Szotkowski, M., Enev, V., Kalina, M. et al. (2020). Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. Food and Bioproducts Processing, 124, 1–10. https://doi.org/10.1016/j.fbp.2020.08.003
  33. Verlinden, R. A., Hill, D. J., Kenward, M. A., Williams, C. D., Piotrowska-Seget, Z., Radecka, I. K. (2011). Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express, 1(1), Article 11. https://doi.org/10.1186/2191-0855-1-11
  34. Costa, C. F. F. A., Amorim, C. L., Duque, A. F., Reis, M. A. M., Castro, P. M. L. (2022). Valorization of wastewater from food industry: Moving to a circular bioeconomy. Reviews in Environmental Science and Bio/Technology, 21(1), 269–295. https://doi.org/10.1007/s11157-021-09600-1
  35. Mannina, G., Presti, D., Montiel-Jarillo, G., Carrera, J., Suárez-Ojeda, M. E. (2020). Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresource Technology, 297, Article 122478. https://doi.org/10.1016/j.biortech.2019.122478
  36. Gecim, G., Aydin, G., Tavsanoglu, T., Erkoc, E., Kalemtas, A. (2021). Review on extraction of polyhydroxyalkanoates and astaxanthin from food and beverage processing wastewater. Journal of Water Process Engineering, 40, Article 101775. https://doi.org/10.1016/j.jwpe.2020.101775
  37. Sanli, H., Canakci, M., Alptekin, E. (May 12–13, 2011). Characterization of waste frying oils obtained from different facilities. World Renewable Energy Congress — Sweden. Linköping, 2011. https://doi.org/10.3384/ecp11057479
  38. Nitin, S. (2017). Investigation of waste frying oil as a green alternative fuel: An approach to reduce NOx emission. Chapter in a book: Biofuels and Bioenergy (BICE2016). Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-47257-7_11
  39. Ciesielski, S., Możejko, J., Pisutpaisal, N. (2015). Plant oils as promising substrates for polyhydroxyalkanoates production. Journal of Cleaner Production, 106, 408–421. https://doi.org/10.1016/j.jclepro.2014.09.040
  40. Pernicova, I., Kucera, D., Nebesarova, J., Kalina, M., Novackova, I., Koller, M. et al. (2019). Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresource Technology, 292, Article 122028. https://doi.org/10.1016/j.biortech.2019.122028
  41. Sangkharak, K., Khaithongkaeo, P., Chuaikhunupakarn, T., Choonut, A., Prasertsan, P. (2021). The production of polyhydroxyalkanoate from waste cooking oil and its application in biofuel production. Biomass Conversion and Biorefinery, 11(5), 1651–1664. https://doi.org/10.1007/s13399-020-00657-6
  42. Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P. (2013). Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochemistry, 48(10), 1532–1552. https://doi.org/10.1016/j.procbio.2013.07.010
  43. Dionisi, D., Carucci, G., Papini, M. P., Riccardi, C., Majone, M., Carrasco, F. (2005). Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Research, 39(10), 2076–2084. https://doi.org/10.1016/j.watres.2005.03.011
  44. Ntaikou, I., Peroni, C.V., Kourmentza, C., Ilieva, V. I., Morelli, A., Chiellini, E. et al. (2014). Microbial bio-based plastics from olive-mill wastewater: Generation and properties of polyhydroxyalkanoates from mixed cultures in a two-stage pilot scale system. Journal of Biotechnology, 188, 138–147. https://doi.org/10.1016/j.jbiotec.2014.08.015
  45. Rodríguez G., J. E., Brojanigo, S., Basaglia, M., Favaro, L., Casella, S. (2021). Efficient production of polyhydroxybutyrate from slaughterhouse waste using a recombinant strain of Cupriavidus necator DSM 545. Science of The Total Environment, 794, Article 148754. https://doi.org/10.1016/j.scitotenv.2021.148754
  46. Основные показатели охраны окружающей среды. Статистический бюллетень. (2021). Федеральная служба государственной статистики (Росстат), Москва, 2021.
  47. Бережная, Е.А. (2021). Современное состояние и перспективы переработки молочной сыворотки. Вестник науки, 3(1(34)), 131–135.
  48. Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., Gullo, M. (2020). Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 104(7), 2749–2764. https://doi.org/10.1007/s00253-020-10408-2
  49. Akhlaq, S., Singh, D., Mittal, N., Srivastava, G., Siddiqui, S., Faridi, S. A. et al. (2023). Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods: A short review. Polymer Bulletin, 80(6), 5965–5997. https://doi.org/10.1007/s00289-022-04406-9
  50. Batcha, A. F.M., Prasad, D. M. R., Khan, M. R., Abdullah, H. (2014). Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16 from jatropha oil as carbon source. Bioprocess and Biosystems Engineering, 37(5), 943–951. https://doi.org/10.1007/s00449-013-1066-4
  51. Bhola, S., Arora, K., Kulshrestha, S., Mehariya, S., Bhatia, R. K., Kaur, P. et al. (2021). Established and emerging producers of PHA: Redefining the possibility. Applied Biochemistry and Biotechnology, 193(11), 3812–3854. https://doi.org/10.1007/s12010-021-03626-5
  52. Koller, M. (2015). Recycling of Waste streams of the biotechnological Poly(hydroxyalkanoate) production by haloferax mediterranei on whey. International Journal of Polymer Science, 2015, Article 370164. https://doi.org/10.1155/2015/370164
  53. Gahlawat, G., Kumari, P., Bhagat, N. R. (2020). Technological advances in the production of Polyhydroxyalkanoate biopolymers. Current Sustainable/Renewable Energy Reports, 7(3), 73–83. https://doi.org/10.1007/s40518-020-00154-4
  54. Oliveira, C. S. S., Silva, M. O. D., Silva, C. E., Carvalho, G., Reis, M. A. M. (2018). Assessment of protein-rich cheese whey waste stream as a nutrients source for low-cost mixed microbial PHA production. Applied Sciences, 8(10), Article 1817. https://doi.org/10.3390/app8101817
  55. Kee, S. H., Ganeson, K., Rashid, N. F. M., Yatim, A. F. M., Vigneswari, S., Amirul, A.-A. A. et al. (2022). A review on biorefining of palm oil and sugar cane agro-industrial residues by bacteria into commercially viable bioplastics and biosurfactants. Fuel, 321, Article 124039. https://doi.org/10.1016/j.fuel.2022.124039
  56. Ветошкин, А. Г. (2019). Техника и технология обращения с отходами жизнедеятельности: Учебное пособие. В 2-х частях. Ч. 2. Переработка и утилизация промышленных отходов. Москва, Вологда: Инфра-Инженерия, 2019.
  57. Комарова, Е.В., Буряков, А.В., Суржко, О.А. (2017). Получение биогаза из отходов плодоовощных консервных заводов. Инновационная наука, 5, 58–61.
  58. Andler, R., Valdés, C., Urtuvia, V., Andreeßen, C., Díaz-Barrera, A. (2021). Fruit residues as a sustainable feedstock for the production of bacterial polyhydroxyalkanoates. Journal of Cleaner Production, 307, Article 127236. https://doi.org/10.1016/j.jclepro.2021.127236
  59. Govil, T., Wang, J., Samanta, D., David, A., Tripathi, A., Rauniyar, S. et al. (2020). Lignocellulosic feedstock: A review of a sustainable platform for cleaner production of nature’s plastics. Journal of Cleaner Production, 270, Article 122521. https://doi.org/10.1016/j.jclepro.2020.122521
  60. Rayasam, V., Chavan, P., Kumar, T. (2020). Polyhydroxyalkanoate synthesis by bacteria isolated from landfill and ETP with pomegranate peels as carbon source. Archives of Microbiology, 202(10), 2799–2808. https://doi.org/10.1007/s00203-020-01995-9
  61. Umesh, M., Sankar, S. A., Thazeem, B. (2021). Fruit Waste as Sustainable Resources for Polyhydroxyalkanoate (PHA) Production. Chapter in a book: Bioplastics for Sustainable Development. Springer, Singapore, 2021. https://doi.org/10.1007/978-981-16-1823-9_7
  62. Basso, D., Weiss-Hortala, E., Patuzzi, F., Baratieri, M., Fiori, L. (2018). In deep analysis on the behavior of grape marc constituents during hydrothermal carbonization. Energies, 11(6), Article 1379. https://doi.org/10.3390/en11061379
  63. Rebocho, A. T., Pereira, J. R., Freitas, F., Neves, L. A., Alves, V. D., Sevrin, C. et al. (2019). Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Applied Food Biotechnology, 6(1), 71–82. https://doi.org/10.22037/afb.v6i1.21793
  64. Pereira, J. R., Araújo, D., Freitas, P., Marques, A. C., Alves, V. D., Sevrin, C. et al. (2021). Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization. International Journal of Biological Macromolecules, 167, 85–92. https://doi.org/10.1016/j.ijbiomac.2020.11.162
  65. Umesh, M., Sarojini, S., Choudhury, D.D., Santhosh, A.S., Kariyadan, S. (2023). Food waste valorization for bioplastic production. Chapter in a book: Waste valorization for value-added products. Bentham Science Publishers, 2023. https://doi.org/10.2174/9789815123074123010013
  66. Matos, M., Cruz, R. A. P., Cardoso, P., Silva, F., Freitas, E. B., Carvalho, G. et al. (2021). Combined strategies to boost polyhydroxyalkanoate production from fruit waste in a three-stage pilot plant. ACS Sustainable Chemistry and Engineering, 9(24), 8270–8279. https://doi.org/10.1021/acssuschemeng.1c02432
  67. Silva, F., Matos, M., Pereira, B., Ralo, C., Pequito, D., Marques, N. et al. (2022). An integrated process for mixed culture production of 3-hydroxyhexanoate-rich polyhydroxyalkanoates from fruit waste. Chemical Engineering Journal, 427, Article 131908. https://doi.org/10.1016/j.cej.2021.131908
  68. Балабина, И. П., Проценко, Е. П., Алферова, Е. Ю., Косолапова, Н. И., Мирошниченко О. В. (2019). Утилизация органических отходов от сахарной промышленности компостированием. Экология урбанизированных территорий, 4, 27–33. https://doi.org/10.24411/1816-1863-2019-14027
  69. De Melo, R. N., de Souza Hassemer, G., Steffens, J., Junges, A., Valduga, E. (2023). Recent updates to microbial production and recovery of polyhydroxyalkanoates. 3 Biotech, 13(6), Article 204. https://doi.org/10.1007/s13205-023-03633-9
  70. Cesário, M. T., Raposo, R. S., de Almeida, M. C. M. D., van Keulen, F., Ferreira, B. S., da Fonseca, M. M. R. (2014). Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31(1), 104– 113. https://doi.org/10.1016/j.nbt.2013.10.004
  71. Zhang, L., Jiang, Z., Tsui, T.-H., Loh, K.-C., Dai, Y., Tong, Y. W. (2022). A review on enhancing Cupriavidus necator fermentation for Poly(3-hydroxybutyrate) (PHB) production from low-cost carbon sources. Frontiers in Bioengineering and Biotechnology, 10, Article 946085. https://doi.org/10.3389/fbioe.2022.946085
  72. Tripathi, A. D., Yadav, A., Jha, A., Srivastava, S. K. (2012). Utilizing of sugar refinery waste (Cane Molasses) for production of bio-plastic under submerged fermentation process. Journal of Polymers and the Environment, 20(2), 446–453. https://doi.org/10.1007/s10924-011-0394-1
  73. Rathika, R., Janaki, V., Shanthi, K., Kamala-Kannan, S. (2019). Bioconversion of agro-industrial effluents for polyhydroxyalkanoates production using Bacillus subtilis RS1. International Journal of Environmental Science and Technology, 16(10), 5725–5734. https://doi.org/10.1007/s13762-018-2155-3
  74. Razzaq, S., Shahid, S., Farooq, R., Noreen, S., Perveen, S., Bilal, M. (2022). Sustainable bioconversion of agricultural waste substrates into poly (3-hydroxyhexanoate) (mcl-PHA) by Cupriavidus necator DSM 428. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03194-6
  75. Albuquerque, M. G. E., Martino, V., Pollet, E., Avérous, L., Reis, M. A. M. (2011). Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. Journal of Biotechnology, 151(1), 66– 76. https://doi.org/10.1016/j.jbiotec.2010.10.070
  76. Garcia, C. V., Kim, Y.-T. (2021). Spent coffee grounds and coffee silverskin as potential materials for packaging: A review. Journal of Polymers and the Environment, 29(8), 2372–2384. https://doi.org/10.1007/s10924-021-02067-9
  77. Sisti, L., Celli, A., Totaro, G., Cinelli, P., Signori, F., Lazzeri, A. et al. (2021). Monomers, materials and energy from coffee by-products: A review. Sustainability, 13(12), Article 6921. https://doi.org/10.3390/su13126921
  78. Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M., Kaltschmitt, M. (2012). Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel, 96, 70–76. https://doi.org/10.1016/j.fuel.2012.01.023
  79. Głowacka, R., Górska, A., Wirkowska-Wojdyła, M., Wołosiak, R., Majewska, E., Derewiaka, D. (2019). The influence of brewing method on bioactive compounds residues in spent coffee grounds of different roasting degree and geographical origin. International Journal of Food Science and Technology, 54(11), 3008–3014. https://doi.org/10.1111/ijfs.14213
  80. Obruca, S., Benesova, P., Petrik, S., Oborna, J., Prikryl, R., Marova, I. (2014). Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochemistry, 49(9), 1409–1414. https://doi.org/10.1016/j.procbio.2014.05.013

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Kuznetsova A.P., Al-Shekhadat R.I.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».