Prediction of technological properties of wheat flour by combination of UV-VIS-NIR spectroscopy and multivariate analysis methods
- Authors: Platova R.A.1, Zhirkova E.V.1, Metlenkin D.A.1, Lysenkova A.A.1, Platov Y.T.1, Rassulov V.A.2
-
Affiliations:
- Plekhanov Russian University of Economic
- All-Russian Research Institute of Mineral Resources named after N. M. Fedorovsky
- Issue: Vol 7, No 1 (2024)
- Pages: 22-30
- Section: Articles
- URL: https://journals.rcsi.science/2618-9771/article/view/311332
- DOI: https://doi.org/10.21323/2618-9771-2024-7-1-22-30
- ID: 311332
Cite item
Full Text
Abstract
About the authors
R. A. Platova
Plekhanov Russian University of Economic
Email: Metlenkin.DA@rea.ru
E. V. Zhirkova
Plekhanov Russian University of Economic
Email: Metlenkin.DA@rea.ru
D. A. Metlenkin
Plekhanov Russian University of Economic
Email: Metlenkin.DA@rea.ru
A. A. Lysenkova
Plekhanov Russian University of Economic
Email: Metlenkin.DA@rea.ru
Yu. T. Platov
Plekhanov Russian University of Economic
Email: Metlenkin.DA@rea.ru
V. A. Rassulov
All-Russian Research Institute of Mineral Resources named after N. M. Fedorovsky
Email: Metlenkin.DA@rea.ru
References
- Cortés, V., Blasco, J., Aleixos, N., Cubero, S., Talens, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science and Technology, 85, 138–148. https://doi.org/10.1016/j.tifs.2019.01.015
- Сибирина, Т. Ф., Мельникова, Е. В., Мордвинова, Н. М., Полубояринов, Н. А., Беляков, А. А. (2020). Прогнозирование силы муки яровой пшеницы, возделываемой в условиях лесостепи. Эпоха науки, 21, 49–60. https://doi.org/10.24411/2409-3203-2020-11007
- Porep, J. U., Kammerer, D. R., Carle, R. (2015). On-line application of near infrared (NIR) spectroscopy in food production. Trends in Food Science and Technology, 46(2(A)), 211–230. https://doi.org/10.1016/j.tifs.2015.10.002
- Galata, D. L., Meszaros, L. A., Ficzere, M., Vass, P., Nagy, B., Szabo, E. et al. (2021). Continuous blending monitored and feedback controlled by machine visionbased PAT tool. Journal of Pharmaceutical and Biomedical Analysis, 196, Article 113902. https://doi.org/10.1016/j.jpba.2021.113902
- Radman, M., Jurina, T., Benković, M., Tušek, A.J., Valinger, D., Kljusurić, J. G. (2018). Application of NIR spectroscopy in gluten detection as a cross-contaminant in food. Hrvatski Casopis za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam, 13(3–4), 120–127. https://doi.org/10.31895/hcptbn.13.3-4.4
- Platov, Y. T., Metlenkin, D. A., Platova, R. A., Rassulov, V. A., Vereshchagin, A. I., Marin, V. A. (2021). Buckwheat identification by combined UV-VIS-NIR spectroscopy and multivariate analysis. Journal of Applied Spectroscopy, 88, 723–730. https://doi.org/10.1007/s10812-022-01315-7
- de Brito, A. A., Campos, F., dos Reis Nascimento, A., Damiani, C., da Silva, F. A., de Almeida Teixeira, G. H. et al. (2022). Non-destructive determination of color, titratable acidity, and dry matter in intact tomatoes using a portable VisNIR spectrometer. Journal of Food Composition and Analysis, 107, Article 104288. https://doi.org/10.1016/j.jfca.2021.104288
- Pourdarbani, R., Sabzi, S., Kalantari, D., Karimzadeh, R., Ilbeygi, E., Arribas, J. I. (2020). Automatic non-destructive video estimation of maturation levels in Fuji apple (Malus Malus pumila) fruit in orchard based on colour (Vis) and spectral (NIR) data. Biosystems Engineering, 195, 136–151. https://doi.org/10.1016/j.biosystemseng.2020.04.015
- Menezes, C. M., da Costa, A. B., Renner, R. R., Bastos, L. F., Ferrão, M. F., Dressler, V. L. (2014). Direct determination of tannins in Acacia mearnsii bark using near-infrared spectroscopy. Analytical Methods, 6(20), 8299–8305. https://doi.org/10.1039/C4AY01558D
- de Matos, M. F. R., Bezerra, P. Q. M., Correia, L. C. A., Viola, D. N., de Oliveira Rios, A., Druzian, J. I. et al. (2021). Innovative methodological approach using CIELab and dye screening for chemometric classification and HPLC for the confirmation of dyes in cassava flour: A contribution to product quality control. Food Chemistry, 365, Article 130446. https://doi.org/10.1016/j.foodchem.2021.130446
- Jeber, J. N., Hassan, R. F., Hammood, M. K., Al-Jeilawi, O. H. R. (2021). Sensitive and simple colorimetric methods for visual detection and quantitative determination of semicarbazide in flour products using colorimetric reagents. Sensors and Actuators B: Chemical, 341, Article 130009. https://doi.org/10.1016/j.snb.2021.130009
- Rodionova, O. Ye., Pomerantsev, A. L. (2006). Chemometrics: Achievements and prospects. Russian Chemical Reviews, 75(4), 271–287. https://doi.org/10.1070/RC2006v075n04ABEH003599
- Prasadi, V. P. N., Joye, I. J. (2023). Effect of soluble dietary fibre from barley on the rheology, water mobility and baking quality of wheat flour dough. Journal of Cereal Science, 112, Article 103715. https://doi.org/10.1016/j.jcs.2023.103715
- Парасич, А. В., Парасич, В. А., Парасич, И. В. (2021). Формирование обучающей выборки в задачах машинного обучения. Обзор. Информационно-управляющие системы, 4(113), 61–70. https://doi.org/10.31799/1684-8853-2021-4-61-70
- Aw, W. C., Ballard, J. W. O. (2019). Near-infrared spectroscopy for metabolite quantification and species identification. Ecology and Evolution, 9(3), 1336–1343. https://doi.org/10.1002/ece3.4847
- Шибаева, А. А., Мясникова, Е. Н. (2020). Факторы и стандарты, формирующие качество пшеничной муки. Технологии пищевой и перерабатывающей промышленности АПК-продукты здорового питания, 3, 72–77. https://doi.org/10.24411/2311-6447-2020-10064
- Horváth, Z. H., Véha, A. (2015). Colour characteristics of winter wheat grits of different grain size. Acta Universitatis Sapientiae, Alimentaria, 8(1), 70–77. https://doi.org/10.1515/ausal-2015-0006
- Мальчиков П. Н., Мясникова М. Г. (2020). Содержание желтых пигментов в зерне твердой пшеницы (Triticum durum Desf.): биосинтез, генетический контроль, маркерная селекция. Вавиловский журнал генетики и селекции. 24(5), 501–511. https://doi.org/10.18699/VJ20.642
- Lachman, J., Martinek, P., Kotikova, Z, Orsáka, M., Šulcaet, M. (2017). Genetics and chemistry of pigments in wheat grain — A review. Journal of Cereal Science, 74, 145–154. https://doi.org/10.1016/j.jcs.2017.02.007
- Fratianni, A., Irano, M., Panfili, G., Acquistucci, R. (2005). Estimation of Color of Durum Wheat. Comparison of WSB, HPLC, and Reflectance Colorimeter Measurements. Journal of Agricultural and Food Chemistry, 53(7), 2373–2378. https://doi.org/10.1021/jf040351n
- Steinberg, T. S., Meleshkina, E. P., Shvedova, O. G., Morozova, O. V., Zhiltsova, N. S. (2020). Changes of the optical properties of top-grade flour (semolina) from durum wheat during its ripening. Food Systems, 3(2), 24–28. https://doi.org/10.21323/2618-9771-2020-3-2-24-28
- Kolašinac, S. M., Dajić-Stevanović, Z. P., Kilibarda, S. N., Kostić, A. Ž. (2021). Carotenoids: New applications of “old” pigments. Phyton-International Journal of Experimental Botany, 90(4), 1041–1062. https://doi.org/10.32604/phyton.2021.015996
- Шлыкова, А. Н., Балабаев, А. А., Трухина, Е. В., Базарнова, Ю. Г. (2020). Получение каротиноидных пигментов из микроводорослей Chlorella. Вестник ПНИПУ. Химическая технология и биотехнология, 3, 20–37. https://doi.org/10.15593/2224-9400/2020.3.02
- Britton, G. (2020). Carotenoid research: History and new perspectives for chemistry in biological systems. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1865(11), Article 158699. https://doi.org/10.1016/j.bbalip.2020.158699
- Dowell, F. E., Maghirang, E. B., Graybosch, R. A., Berzonsky, W. A., Delwiche, S. R. (2009). Selecting and sorting waxy wheat kernels using near-infrared spectroscopy. Cereal Chemistry, 86(3), 251–255. https://doi.org/10.1094/CCHEM-86-3-0251
- Joe, A. A. F., Gopal, A. (April 20–21, 2017). Identification of spectral regions of the key components in the near infrared spectrum of wheat grain. International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, Kollam. https://doi.org/10.1109/ICCPCT.2017.8074207
- Hoffman, L. C., Ni, D., Dayananda, B., Abdul Ghafar, N., Cozzolino, D. (2022). Unscrambling the provenance of eggs by combining chemometrics and nearinfrared reflectance spectroscopy. Sensors, 22(13), Article 4988. https://doi.org/10.3390/s22134988
- Wang, P., Ma, T., Slipchenko, M. N., Liang, S., Hui, J., Shung, K. K. et al. (2014). High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite Raman laser. Scientific Reports, 4(1), Article 6889. https://doi.org/10.1038/srep06889
- Puertas, G., Cazón, P., Vázquez, M. (2023). Application of UV-VIS-NIR spectroscopy in membrane separation processes for fast quantitative compositional analysis: A case study of egg products. LWT, 174, Article 114429. https://doi.org/10.1016/j.lwt.2023.114429
- Monago-Maraña, O., Eskildsen, C. E., Galeano-Díaz, T., de la Peña, A. M., Wold, J. P. (2021). Untargeted classification for paprika powder authentication using visible–Near infrared spectroscopy (VIS-NIRS). Food Control, 121, Article 107564. https://doi.org/10.1016/j.foodcont.2020.107564
- Núñez-Sánchez, N., Martínez-Marín, A. L., Polvillo, O., Fernández-Cabanás, V. M., Carrizosa, J., Urrutia, B. et al. (2016). Near Infrared Spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats. Food Chemistry, 190, 244–252. https://doi.org/10.1016/j.foodchem.2015.05.083
- Uysal, R. S., Acar-Soykut, E., Boyaci, I. H. (2020). Determination of yolk: White ratio of egg using SDS-PAGE. Food Science and Biotechnology, 29, 179–186. https://doi.org/10.1007/s10068-019-00650-4
- Wilson, R. N., Nadeau, K. P., Jaworski, F. B., Tromberg, B. J., Durkina, A. J. (2015). Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. Journal of Biomedical Optics, 20(3), Article 03090. https://doi.org/10.1117/1.JBO.20.3.030901
- Taira, E. (2021). Information and Communication Technology in Agriculture. Chapter in a book: Near-infrared spectroscopy: Theory, spectral analysis, instrumentation, and applications. Singapore: Springer, 2021. https://doi.org/10.1007/978-981-15-8648-4
- Næs, T., Isaksson, T., Fearn, T., Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. NIR Publications, Chichester, UK. 2002.
Supplementary files
