Prediction of technological properties of wheat flour by combination of UV-VIS-NIR spectroscopy and multivariate analysis methods

Cover Page

Cite item

Full Text

Abstract

Over the last decades, optical spectroscopy methods that do not require complex sample preparation have been widely used to identify and control the composition of food products. In the present study, the possibility of using UV-VIS-NIR spectroscopy combined with multivariate analysis for grading wheat flour into groups differing in technological properties was analyzed. UV-VIS-NIR spectra contain information on the combination and intensity of absorption bands assigned to functional groups of the composition components and determining the technological properties of wheat flour. The database of UV-VIS-NIR spectra of wheat flour samples differing by technological properties was formed into three groups: the first group — wheat flour samples with good baking properties, the second group — with reduced baking properties, the third group — with low baking properties. The visible range of UV-VIS-NIR diffuse reflectance spectrum was used to calculate the color coordinates in the CIE colorimetric system L*a*b*. The greatest difference among the groups in the color coordinates of the samples was found for the coordinate b*, which is associated with the different content of coloring pigments. The spectra database was used to build a classification model for grading wheat flour into quality groups using a combination of principal component analysis and linear discriminant analysis (PCA-LDA) methods. The achieved results indicate that the classification model built on the training sample is able to distinguish wheat flour spectra by quality groups with an accuracy of 96.49%. The effectiveness of the model is verified using a test set of spectra of wheat flour samples. The present study confirms that the combination of UV-VIS-NIR spectroscopy in conjunction with the PCA-LDA method has significant potential for determining a quality group of wheat flour based on technological properties.

About the authors

R. A. Platova

Plekhanov Russian University of Economic

Email: Metlenkin.DA@rea.ru

E. V. Zhirkova

Plekhanov Russian University of Economic

Email: Metlenkin.DA@rea.ru

D. A. Metlenkin

Plekhanov Russian University of Economic

Email: Metlenkin.DA@rea.ru

A. A. Lysenkova

Plekhanov Russian University of Economic

Email: Metlenkin.DA@rea.ru

Yu. T. Platov

Plekhanov Russian University of Economic

Email: Metlenkin.DA@rea.ru

V. A. Rassulov

All-Russian Research Institute of Mineral Resources named after N. M. Fedorovsky

Email: Metlenkin.DA@rea.ru

References

  1. Cortés, V., Blasco, J., Aleixos, N., Cubero, S., Talens, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science and Technology, 85, 138–148. https://doi.org/10.1016/j.tifs.2019.01.015
  2. Сибирина, Т. Ф., Мельникова, Е. В., Мордвинова, Н. М., Полубояринов, Н. А., Беляков, А. А. (2020). Прогнозирование силы муки яровой пшеницы, возделываемой в условиях лесостепи. Эпоха науки, 21, 49–60. https://doi.org/10.24411/2409-3203-2020-11007
  3. Porep, J. U., Kammerer, D. R., Carle, R. (2015). On-line application of near infrared (NIR) spectroscopy in food production. Trends in Food Science and Technology, 46(2(A)), 211–230. https://doi.org/10.1016/j.tifs.2015.10.002
  4. Galata, D. L., Meszaros, L. A., Ficzere, M., Vass, P., Nagy, B., Szabo, E. et al. (2021). Continuous blending monitored and feedback controlled by machine visionbased PAT tool. Journal of Pharmaceutical and Biomedical Analysis, 196, Article 113902. https://doi.org/10.1016/j.jpba.2021.113902
  5. Radman, M., Jurina, T., Benković, M., Tušek, A.J., Valinger, D., Kljusurić, J. G. (2018). Application of NIR spectroscopy in gluten detection as a cross-contaminant in food. Hrvatski Casopis za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam, 13(3–4), 120–127. https://doi.org/10.31895/hcptbn.13.3-4.4
  6. Platov, Y. T., Metlenkin, D. A., Platova, R. A., Rassulov, V. A., Vereshchagin, A. I., Marin, V. A. (2021). Buckwheat identification by combined UV-VIS-NIR spectroscopy and multivariate analysis. Journal of Applied Spectroscopy, 88, 723–730. https://doi.org/10.1007/s10812-022-01315-7
  7. de Brito, A. A., Campos, F., dos Reis Nascimento, A., Damiani, C., da Silva, F. A., de Almeida Teixeira, G. H. et al. (2022). Non-destructive determination of color, titratable acidity, and dry matter in intact tomatoes using a portable VisNIR spectrometer. Journal of Food Composition and Analysis, 107, Article 104288. https://doi.org/10.1016/j.jfca.2021.104288
  8. Pourdarbani, R., Sabzi, S., Kalantari, D., Karimzadeh, R., Ilbeygi, E., Arribas, J. I. (2020). Automatic non-destructive video estimation of maturation levels in Fuji apple (Malus Malus pumila) fruit in orchard based on colour (Vis) and spectral (NIR) data. Biosystems Engineering, 195, 136–151. https://doi.org/10.1016/j.biosystemseng.2020.04.015
  9. Menezes, C. M., da Costa, A. B., Renner, R. R., Bastos, L. F., Ferrão, M. F., Dressler, V. L. (2014). Direct determination of tannins in Acacia mearnsii bark using near-infrared spectroscopy. Analytical Methods, 6(20), 8299–8305. https://doi.org/10.1039/C4AY01558D
  10. de Matos, M. F. R., Bezerra, P. Q. M., Correia, L. C. A., Viola, D. N., de Oliveira Rios, A., Druzian, J. I. et al. (2021). Innovative methodological approach using CIELab and dye screening for chemometric classification and HPLC for the confirmation of dyes in cassava flour: A contribution to product quality control. Food Chemistry, 365, Article 130446. https://doi.org/10.1016/j.foodchem.2021.130446
  11. Jeber, J. N., Hassan, R. F., Hammood, M. K., Al-Jeilawi, O. H. R. (2021). Sensitive and simple colorimetric methods for visual detection and quantitative determination of semicarbazide in flour products using colorimetric reagents. Sensors and Actuators B: Chemical, 341, Article 130009. https://doi.org/10.1016/j.snb.2021.130009
  12. Rodionova, O. Ye., Pomerantsev, A. L. (2006). Chemometrics: Achievements and prospects. Russian Chemical Reviews, 75(4), 271–287. https://doi.org/10.1070/RC2006v075n04ABEH003599
  13. Prasadi, V. P. N., Joye, I. J. (2023). Effect of soluble dietary fibre from barley on the rheology, water mobility and baking quality of wheat flour dough. Journal of Cereal Science, 112, Article 103715. https://doi.org/10.1016/j.jcs.2023.103715
  14. Парасич, А. В., Парасич, В. А., Парасич, И. В. (2021). Формирование обучающей выборки в задачах машинного обучения. Обзор. Информационно-управляющие системы, 4(113), 61–70. https://doi.org/10.31799/1684-8853-2021-4-61-70
  15. Aw, W. C., Ballard, J. W. O. (2019). Near-infrared spectroscopy for metabolite quantification and species identification. Ecology and Evolution, 9(3), 1336–1343. https://doi.org/10.1002/ece3.4847
  16. Шибаева, А. А., Мясникова, Е. Н. (2020). Факторы и стандарты, формирующие качество пшеничной муки. Технологии пищевой и перерабатывающей промышленности АПК-продукты здорового питания, 3, 72–77. https://doi.org/10.24411/2311-6447-2020-10064
  17. Horváth, Z. H., Véha, A. (2015). Colour characteristics of winter wheat grits of different grain size. Acta Universitatis Sapientiae, Alimentaria, 8(1), 70–77. https://doi.org/10.1515/ausal-2015-0006
  18. Мальчиков П. Н., Мясникова М. Г. (2020). Содержание желтых пигментов в зерне твердой пшеницы (Triticum durum Desf.): биосинтез, генетический контроль, маркерная селекция. Вавиловский журнал генетики и селекции. 24(5), 501–511. https://doi.org/10.18699/VJ20.642
  19. Lachman, J., Martinek, P., Kotikova, Z, Orsáka, M., Šulcaet, M. (2017). Genetics and chemistry of pigments in wheat grain — A review. Journal of Cereal Science, 74, 145–154. https://doi.org/10.1016/j.jcs.2017.02.007
  20. Fratianni, A., Irano, M., Panfili, G., Acquistucci, R. (2005). Estimation of Color of Durum Wheat. Comparison of WSB, HPLC, and Reflectance Colorimeter Measurements. Journal of Agricultural and Food Chemistry, 53(7), 2373–2378. https://doi.org/10.1021/jf040351n
  21. Steinberg, T. S., Meleshkina, E. P., Shvedova, O. G., Morozova, O. V., Zhiltsova, N. S. (2020). Changes of the optical properties of top-grade flour (semolina) from durum wheat during its ripening. Food Systems, 3(2), 24–28. https://doi.org/10.21323/2618-9771-2020-3-2-24-28
  22. Kolašinac, S. M., Dajić-Stevanović, Z. P., Kilibarda, S. N., Kostić, A. Ž. (2021). Carotenoids: New applications of “old” pigments. Phyton-International Journal of Experimental Botany, 90(4), 1041–1062. https://doi.org/10.32604/phyton.2021.015996
  23. Шлыкова, А. Н., Балабаев, А. А., Трухина, Е. В., Базарнова, Ю. Г. (2020). Получение каротиноидных пигментов из микроводорослей Chlorella. Вестник ПНИПУ. Химическая технология и биотехнология, 3, 20–37. https://doi.org/10.15593/2224-9400/2020.3.02
  24. Britton, G. (2020). Carotenoid research: History and new perspectives for chemistry in biological systems. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1865(11), Article 158699. https://doi.org/10.1016/j.bbalip.2020.158699
  25. Dowell, F. E., Maghirang, E. B., Graybosch, R. A., Berzonsky, W. A., Delwiche, S. R. (2009). Selecting and sorting waxy wheat kernels using near-infrared spectroscopy. Cereal Chemistry, 86(3), 251–255. https://doi.org/10.1094/CCHEM-86-3-0251
  26. Joe, A. A. F., Gopal, A. (April 20–21, 2017). Identification of spectral regions of the key components in the near infrared spectrum of wheat grain. International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, Kollam. https://doi.org/10.1109/ICCPCT.2017.8074207
  27. Hoffman, L. C., Ni, D., Dayananda, B., Abdul Ghafar, N., Cozzolino, D. (2022). Unscrambling the provenance of eggs by combining chemometrics and nearinfrared reflectance spectroscopy. Sensors, 22(13), Article 4988. https://doi.org/10.3390/s22134988
  28. Wang, P., Ma, T., Slipchenko, M. N., Liang, S., Hui, J., Shung, K. K. et al. (2014). High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite Raman laser. Scientific Reports, 4(1), Article 6889. https://doi.org/10.1038/srep06889
  29. Puertas, G., Cazón, P., Vázquez, M. (2023). Application of UV-VIS-NIR spectroscopy in membrane separation processes for fast quantitative compositional analysis: A case study of egg products. LWT, 174, Article 114429. https://doi.org/10.1016/j.lwt.2023.114429
  30. Monago-Maraña, O., Eskildsen, C. E., Galeano-Díaz, T., de la Peña, A. M., Wold, J. P. (2021). Untargeted classification for paprika powder authentication using visible–Near infrared spectroscopy (VIS-NIRS). Food Control, 121, Article 107564. https://doi.org/10.1016/j.foodcont.2020.107564
  31. Núñez-Sánchez, N., Martínez-Marín, A. L., Polvillo, O., Fernández-Cabanás, V. M., Carrizosa, J., Urrutia, B. et al. (2016). Near Infrared Spectroscopy (NIRS) for the determination of the milk fat fatty acid profile of goats. Food Chemistry, 190, 244–252. https://doi.org/10.1016/j.foodchem.2015.05.083
  32. Uysal, R. S., Acar-Soykut, E., Boyaci, I. H. (2020). Determination of yolk: White ratio of egg using SDS-PAGE. Food Science and Biotechnology, 29, 179–186. https://doi.org/10.1007/s10068-019-00650-4
  33. Wilson, R. N., Nadeau, K. P., Jaworski, F. B., Tromberg, B. J., Durkina, A. J. (2015). Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. Journal of Biomedical Optics, 20(3), Article 03090. https://doi.org/10.1117/1.JBO.20.3.030901
  34. Taira, E. (2021). Information and Communication Technology in Agriculture. Chapter in a book: Near-infrared spectroscopy: Theory, spectral analysis, instrumentation, and applications. Singapore: Springer, 2021. https://doi.org/10.1007/978-981-15-8648-4
  35. Næs, T., Isaksson, T., Fearn, T., Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. NIR Publications, Chichester, UK. 2002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Platova R.A., Zhirkova E.V., Metlenkin D.A., Lysenkova A.A., Platov Y.T., Rassulov V.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».