Formation of MeIQx and PhIP in model matrices from amino acids, carbohydrates, and creatine
- Authors: Utyanov D.A.1, Kulikovskii A.V.1, Khvostov D.V.1, Kurzova A.A.1
-
Affiliations:
- V.M. Gorbatov Federal Research Center for Food Systems
- Issue: Vol 7, No 2 (2024)
- Pages: 206-212
- Section: Articles
- URL: https://journals.rcsi.science/2618-9771/article/view/311294
- DOI: https://doi.org/10.21323/2618-9771-2024-7-2-206-212
- ID: 311294
Cite item
Full Text
Abstract
About the authors
D. A. Utyanov
V.M. Gorbatov Federal Research Center for Food Systems
Email: a.kulikovskii@fncps.ru
26, Talalikhina str., 109316, Moscow
A. V. Kulikovskii
V.M. Gorbatov Federal Research Center for Food Systems
Email: a.kulikovskii@fncps.ru
26, Talalikhina str., 109316, Moscow
D. V. Khvostov
V.M. Gorbatov Federal Research Center for Food Systems
Email: a.kulikovskii@fncps.ru
26, Talalikhina str., 109316, Moscow
A. A. Kurzova
V.M. Gorbatov Federal Research Center for Food Systems
Email: a.kulikovskii@fncps.ru
26, Talalikhina str., 109316, Moscow
References
- Barzegar, F., Kamankesh, M., Mohammadi, A. (2019). Heterocyclic aromatic amines in cooked food: A review on formation, health risk-toxicology and their analytical techniques. Food Chemistry, 280, 240-254. https://doi.org/10.1016/j.foodchem.2018.12.058
- Oz, E., Oz, F. (2022). Mutagenic and/or carcinogenic compounds in meat and meat products: Heterocyclic aromatic amines perspective. Theory and Practice of Meat Processing, 7(2), 112-117. https://doi.org/10.21323/2414-438X-2022-7-2-112-117
- Sugimura, T., Sato, S., Nagao, M., Yahagi, T., Matsushima, T., Seino, Y. et al. (1976). Overlapping of carcinogens and mutagens. Chapter in a book: Fundamentals in cancer prevention. Baltimore: University Park Press, 1976.
- Rahman, U., Sahar, A., Khan, M.I., Nadeem, M. (2014). Production of heterocyclic aromatic amines in meat: Chemistry, health risks and inhibition. A review. LWT — Food Science and Technology, 59(1), 229-233. https://doi.org/10.1016/j.lwt.2014.06.005
- Zöchling, S., Murkovic, M. (2002). Formation of the heterocyclic aromatic amine PhIP: Identification of precursors and intermediates. Food Chemistry, 79(1), 125-134. https://doi.org/10.1016/S0308-8146(02)00214-5
- Murkovic, M. (2004). Formation of heterocyclic aromatic amines in model systems. Journal of Chromatography B, 802(1), 3-10. https://doi.org/10.1016/j.jchromb.2003.09.026
- Gibis, M. (2016). Heterocyclic aromatic amines in cooked meat products: Causes, formation, occurrence, and risk assessment. Comprehensive Reviews in Food Science and Food Safety, 15(2), 269-302. https://doi.org/10.1111/1541-4337.12186
- Szterk, A. (2015). Heterocyclic aromatic amines in grilled beef: The influence of free amino acids, nitrogenous bases, nucleosides, protein and glucose on HAAs content. Journal of Food Composition and Analysis, 40, 39-46. https://doi.org/10.1016/j.jfca.2014.12.011
- Zamora, R., Hidalgo, F.J. (2020). Formation of heterocyclic aromatic amines with the structure of aminoimidazoazarenes in food products. Food Chemistry, 313, Article 126128. https://doi.org/10.1016/j.foodchem.2019.126128
- Jing, M., Jiang, Q., Zhu, Y., Fan, D., Wang, M., Zhao, Y. (2022). Effect of acrolein, a lipid oxidation product, on the formation of the heterocyclic aromatic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in model systems and roasted tilapia fish patties. Food Chemistry: X, 14, Article 100315. https://doi.org/10.1016/j.fochx.2022.100315
- Hidalgo, F.J., Alcon, E., Zamora, R. (2013). Cysteine- and serine-thermal degradation products promote the formation of Strecker aldehydes in amino acid reaction mixtures. Food Research International, 54(2), 1394-1399. https://doi.org/10.1016/j.foodres.2013.09.006
- Zamora, R., Lavado-Tena, C.M., Hidalgo, F.J. (2020). Reactive carbonyls and the formation of the heterocyclic aromatic amine 2-amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ). Food Chemistry, 324, Article 126898. https://doi.org/10.1016/j.foodchem.2020.126898
- Hee, P.-T.E., Liang, Z., Zhang, P., Fang, Z. (2024). Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products. Food Control, 158, Article 110236. https://doi.org/10.1016/j.foodcont.2023.110236
- Li, M., Lin, S., Wang, R., Gao, D., Bao, Z., Chen, D. et al. (2022). Inhibitory effect and mechanism of various fruit extracts on the formation of heterocyclic aromatic amines and flavor changes in roast large yellow croaker (Pseudosciaena crocea). Food Control, 131, Article 108410. https://doi.org/10.1016/j.food-cont.2021.108410
- Jinap, S., Hasnol, N.D.S., Sanny, M., Jahurul, M.H.A. (2018). Effect of organic acid ingredients in marinades containing different types of sugar on the formation of heterocyclic amines in grilled chicken. Food Control, 84, 478-484. https://doi.org/10.1016/j.foodcont.2017.08.025
- Zhang, L., Wang, H., Xia, X., Xu, M., Kong B., Liu, Q. (2021). Comparative study on the formation of heterocyclic aromatic amines in different sugar smoking time. Food Control, 124, Article 107905. https://doi.org/10.1016/j.food-cont.2021.107905
- Zhang, L., Wang, Q., Wang, Z., Chen, Q., Sun, F., Xu, M. et al. (2022). Influence of different ratios of sucrose and green tea leaves on heterocyclic aromatic amine formation and quality characteristics of smoked chicken drumsticks. Food Control, 133(A), Article 108613. https://doi.org/10.1016/j.foodcont.2021.108613
- Oz, E. (2022). Mutagenic and/or carcinogenic compounds in meat and meat products: Polycyclic aromatic hydrocarbons perspective. Theory and Practice of Meat Processing, 7(4), 282-287. https://doi.org/10.21323/2414-438X-2022-7-4-282-287
- Ishak, A.A., Jinap, S., Sukor, R., Sulaiman, R., Abdulmalek, E., Nor Hasyimah, A.K. (2022). Simultaneous kinetics formation of heterocyclic amines and polycyclic aromatic hydrocarbons in phenylalanine model system. Food Chemistry, 384, Article 132372. https://doi.org/10.1016/j.foodchem.2022.132372
- Linghu, Z, Karim, F, Smith, J.S. (2017). Amino acids inhibitory effects and mechanism on 2-Amino-1-Methyl-6-Phenylimidazo [4,5-b]Pyridine (PhIP) formation in the maillard reaction model systems. Journal of Food Science, 82(12), 3037–3045. https://doi.org/10.1111/1750-3841.13959
- Kataoka, H., Miyake, M., Saito, K., Mitani, K. (2012). Formation of heterocyclic amine-amino acid adducts by heating in a model system. Food Chemistry, 130(3), 725-729. https://doi.org/10.1016/j.foodchem.2011.07.094
- Dennis, C., Karim, F., Smith, J. S. (2015). Evaluation of maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems. Journal of Food Science, 80(2), T472-T478. https://doi.org/10.1111/1750-3841.12737
- Kataoka, H., Miyake, M., Nishioka, S., Matsumoto, T., Saito, K., Mitani, K. (2010). Formation of protein adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in cooked foods. Molecular Nutrition and Food Research, 54(7), 1039-1048. https://doi.org/10.1002/mnfr.200900066
- Utyanov, D.A., Kulikovskii, A.V., Knyazeva, A.S., Kurzova, A.A., Ivankin, A.N. (2021). Methodical approach for determination of the heterocyclic aromatic amines in meat products using HPLC-MS/MS. Theory and Practice of Meat Processing, 6(2), 118-127. https://doi.org/10.21323/2414-438X-2021-6-2-118-127
Supplementary files
