Production and use of mussel shell protein in dry fish sauce

Cover Page

Cite item

Full Text

Abstract

The objective of the study was to obtain protein ingredients from mussel shell valves and to examine their potential application in the production of dry sauce with regard to the impact on organoleptic and physicochemical parameters, and rheological properties. The organic component of the shells, designated as conchix, is primarily composed of proteinaceous substances with low solubility in water (14.86% at pH 7), as well as in diluted solutions of acids (13.56% at pH 3 and 13.06% at pH 5) and alkalis (16.51% at pH 9 and 28.48% at pH 11). The enzymatic treatment of conchix with pancreatin resulted in the production of a hydrolysate with a high content of readily available protein substances (53.19%) and a degree of hydrolysis of 17.54%. Four product samples with varying proportions of hydrolysate added (1–3% of hydrolysate, 2–6%, 3–9%, and 4–12%) and a control sample were prepared to investigate the impact of hydrolysate dosage on sauce characteristics. Dry sauces with hydrolysate supplementation had higher protein concentrations (17.97%, 18.21%, 18.71%, and 19.01% in samples 1, 2, 3, and 4, respectively) than the control sample (17.60%). An organoleptic evaluation was conducted to ascertain the impact of the hydrolysate on the appearance, color, taste and aftertaste, odor and consistency of the prepared sauces. Sample 4 scored lowest, while sample 1 scored highest. The recommended dosage of hydrolysate in the sauce formulation is between 3 and 9%. The hydrolysate had no significant impact on the rheological characteristics of sauces. The obtained results indicate the possibility of processing shellfish shells into a valuable protein ingredient applicable in the technology of dry sauces.

About the authors

A. Yu. Glukharev

Murmansk Arctic University

Author for correspondence.
Email: derkachsr@mauniver.ru
Sportivnaya str., 13, Murmansk, 183010

V. V. Bordiyan

Murmansk Arctic University

Email: derkachsr@mauniver.ru
Sportivnaya str., 13, Murmansk, 183010

T. D. Kuzina

Murmansk Arctic University

Email: derkachsr@mauniver.ru
Sportivnaya str., 13, Murmansk, 183010

Yu. A. Kuchina

Murmansk Arctic University

Email: derkachsr@mauniver.ru
Sportivnaya str., 13, Murmansk, 183010

S. R. Derkach

Murmansk Arctic University

Email: derkachsr@mauniver.ru
Sportivnaya str., 13, Murmansk, 183010

References

  1. Derkach, S. R., Kuchina, Y. A., Kolotova, D. S., Petrova, L. A., Volchenko, V. I., Glukharev, A. Y. et al. (2022). Properties of protein isolates from marine hydrobionts obtained by isoelectric solubilisation/precipitation: Influence of temperature and processing time. International Journal of Molecular Sciences, 23(22), Article 14221. https://doi.org/10.3390/ijms232214221
  2. Wan, M., Qin, W., Lei, C., Li, Q. H., Meng, M., Fang, M. et al. (2021). Biomaterials from the sea: Future building blocks for biomedical applications. Bioactive Materials, 6(12), 4255–4285. https://doi.org/10.1016/j.bioactmat.2021.04.028
  3. Dave, J., Kumar, N., Upadhyay, A., Purba, D. T., Kudre, T., Nukthamna, P. et al. (2025). Sustainable fish oil extraction from catfish visceral biomass: A comparative study between high-shear homogenization and highfrequency ultrasound on wet rendering process. Foods and Raw Materials, 13(1), 94–106. https://doi. org/10.21603/2308-4057-2025-1-627
  4. Pita Rengga, W. D., Salsabiil, K. A., Harianingsih, Oktavia, S. E., Ansori, M. (September 18–19, 2019). Flavored powder from shrimp shells with bromelain enzymatic process and adding of flour and spices. Journal of Physics: Conference Series, International Conference on Engineering, Technology and Innovative Researches, Purwokerto, Indonesia. IOP Publishing, 2019. https://doi.org/10.1088/1742-6596/1367/1/012080
  5. Kaushik, N., Falch, E., Slizyte, R., Kumari, A., Hjellnes, V., Sharma, A. et al. (2024). Valorization of fish processing by-products for protein hydrolysate recovery: Opportunities, challenges and regulatory issues. Food Chemistry, 459, Article 140244. https://doi.org/10.1016/j.foodchem.2024.140244
  6. FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. Retrieved from https://www.fao.org/3/ca9229en/ca9229en.pdf.Accessed 27 November 2024
  7. Osa, J. L., Mondragon, G., Ortega, N., Marzo, F. F., Peña-Rodriguez, C. (2022). On the friability of mussel shells as abrasive. Journal of Cleaner Production, 375, Article 134020. https://doi.org/10.1016/j.jclepro.2022.134020
  8. Naik, A. S., Hayes, M. (2019). Bioprocessing of mussel by-products for value added ingredients. Trends in Food Science and Technology, 92, 111–121. https://doi.org/10.1016/j.tifs.2019.08.013
  9. Tokeshi, M., Ota, N., Kawai, T. (2000). A comparative study of morphometry in shell-bearing molluscs. Journal of Zoology, 251(1), 31–38. https://doi.org/10.1111/j.1469–7998.2000.tb00590.x
  10. Zhang, C., Zhang, R. (2006). Matrix proteins in the outer shells of molluscs. Marine Biotechnology, 8, 572–586. https://doi.org/10.1007/s10126-005-6029-6
  11. Ehrlich, H., Martinović, R., Joksimović, D., Petrenko, I., Schiaparelli, S., Wysokowski, M. et al. (2020). Conchixes: Organic scaffolds which resemble the size and shapes of mollusks shells, their isolation and potential multifunctional applications. Applied Physics A, 126, Article 562. https://doi.org/10.1007/s00339-020-03728-7
  12. Ismail, R., Fitriyana, D. F., Santosa, Y. I., Nugroho, S., Hakim, A. J., Al Mulqi, M. S. et al. (2021). The potential use of green mussel (Perna Viridis) shells for synthetic calcium carbonate polymorphs in biomaterials. Journal of Crystal Growth, 572, Article 126282. https://doi.org/10.1016/j.jcrysgro.2021.126282
  13. Borciani, G., Fischetti, T., Ciapetti, G., Montesissa, M., Baldini, N., Graziani, G. (2023). Marine biological waste as a source of hydroxyapatite for bone tissue engineering applications. Ceramics International, 49(2), 1572–1584. https://doi.org/10.1016/j.ceramint.2022.10.341
  14. Chi, H., Pan, X., Zhang, G. (2023). Structure and function of the periostracum in the bivalve Perna viridis. Micron, 169, Article 103458. https://doi.org/10.1016/j.micron.2023.103458
  15. Chen, B., Peng, X., Wang, J. G., Wu, X. (2004). Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceramics international, 30(7), 2011–2014. https://doi.org/10.1016/j.ceramint.2003.12.169
  16. Agbaje, O. B. A., Thomas, D. E., Dominguez, J. G., Mclnerney, B. V., Kosnik, M. A., Jacob, D. E. (2019). Biomacromolecules in bivalve shells with crossed lamellar architecture. Journal of Materials Science, 54(6), 4952–4969. https://doi.org/10.1007/s10853-018-3165-8
  17. Boukid, F., Rosell, C. M., Castellari, M. (2021). Pea protein ingredients: A mainstream ingredient to (re) formulate innovative foods and beverages. Trends in Food Science and Technology, 110, 729–742. https://doi.org/10.1016/j.tifs.2021.02.040
  18. Harper, M. M., Cunningham, P. M., Hayes, J. E. (2024). Serving a dip with a salty snack promotes energy intake. Food Quality and Preference, 120, Article 105257.https://doi.org/10.1016/j.foodqual.2024.105257
  19. Wang, J., Xie, Z., Feng, Y., Huang, M., Zhao, M. (2024). Co-culture of Zygosaccharomyces rouxii and Wickerhamiella versatilis to improve soy sauce flavor and quality. Food Control, 155, Article 110044. https://doi.org/10.1016/j.foodcont.2023.110044
  20. Chen, C., Hou, S., Wu, C., Cao, Y., Tong, X., Chen, Y. (2023). Improving protein utilization and fermentation quality of soy sauce by adding protease. Journal of Food Composition and Analysis, 121, Article 105399. https://doi.org/10.1016/j.jfca.2023.105399
  21. Tan, C., McClements, D. J. (2021). Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods, 10(4), Article 812. https://doi.org/10.3390/foods10040812
  22. Sheir, M. A., Serrapica, F., Ahmed, R. A. (2023). An innovative use of propolis in the production of dipping sauce powder as a functional food to mitigate testicular toxicity induced by cadmium chloride: Technological and biological evidence. Foods, 12(16), Article 3069. https://doi.org/10.3390/foods12163069
  23. El Haggar, E. F., Mahmoud, K. F., Ramadan, M. M., Zahran, H. A. (2023). Tomato-Free wonder sauce: A functional product with health-boosting properties. Journal of Functional Foods, 109, Article 105758. https://doi.org/10.1016/j.jff.2023.105758
  24. Alqahtani, N. (2020). Physico-chemical and sensorial properties of ketchup enriched with khalas date pits powder. Scientific Journal of King Faisal University, 21(1), 172–176. https://doi.org/10.37575/b/agr/2030
  25. Wang, L., Wang, Z., Chen, Y., Chen, J., Pan, M., Cheong, K. L. et al. (2024). The effect of adding Gracilaria on flavor and quality of low-salt fermented soy sauce. LWT, 210, Article 116890. https://doi.org/10.1016/j.lwt.2024.116890
  26. Derkach, S., Kravets, P., Kuchina, Y., Glukharev, A., Tyukina, O., Bordiyan, V. et al. (2023). Mineral-free biomaterials from mussel (Mytilus edulis L.) shells: Their isolation and physicochemical properties. Food Bioscience, 56, Article 103188. https://doi.org/10.1016/j.fbio.2023.103188
  27. Ozuni, E., Andoni, E., Castrica, M., Balzaretti, C. M., Brecchia, G., Agradi, S. et al. (2024). Human exposure to heavy metals and possible public health risks via consumption of mussels M. galloprovincialis from the Albanian sea cost. Chemosphere, 368, Article 143689. https://doi.org/10.1016/j.chemosphere.2024.143689
  28. Gaurowitz, F. (1963). The chemistry and function of proteins. New York, Academic Press, 1963
  29. Sviridenko, Yu. Ya., Myagkonosov, D. S., Abramov, D. V., Ovchinnikova, E. G. (2017). Theoretical and practical aspects of development technology of manufacturing protein hydrolyzates for special nutrition use. Part 1. Technology of production and technical characteristics of hydrolysates. Food Industry, 5, 48–51. (In Russian)
  30. Derkach, S., Kuchina, Y., Kolotova, D., Bordiyan, V., Luneva, S., Alloyarova, Y. et al. (2024). Protein hydrolysates from Mytilus edulis L. mussel: Physicochemical and antioxidant properties. BIO Web of Conferences. EDP Sciences, 130, Article 05006. https://doi.org/10.1051/bioconf/202413005006
  31. Borodina, A. V., Zadorozhny, P. A. (2020). Transformation of carotenoids in the marine bivalve mollusk Cerastoderma Glaucum while feeding with a culture of green microalgae. Journal of Evolutionary Biochemistry and Physiology, 56(6), 430–438. https://doi.org/10.31857/S0044452920060030 (In Russian)
  32. Sviridenko, Yu. Ya., Myagkonosov, D.S., Abramov, D.V., Ovchinnikova, E. G. (2017). Theoretical and practical aspects of development technology of manufacturing protein hydrolyzates for special nutrition use. Part 2. Functional properties of protein hydrolysates that depend on the specificity of proteolytic processes. Food Industry, 6, 50–53. (In Russian)
  33. Román, L., Reguilón, M. P., Gómez, M. (2018). Physicochemical characteristics of sauce model systems: Influence of particle size and extruded flour source. Journal of Food Engineering, 219, 93–100. https://doi.org/10.1016/j.jfoodeng.2017.09.024
  34. Sikora, M., Kowalski, S., Tomasik, P., Sady, M. (2007). Rheological and sensory properties of dessert sauces thickened by starch — xanthan gum combinations. Journal of Food Engineering, 79(4), 1144–1151. https://doi.org/10.1016/j.jfoodeng.2006.04.003
  35. Wang, T., Zhang, M., Fang, Z., Liu, Y., Gao, Z. (2016). Rheological, textural and flavour properties of yellow mustard sauce as affected by modified starch, xanthan and guar gum. Food and Bioprocess Technology, 9, 849–858. https://doi.org/10.1007/s11947-016-1673-6
  36. Bredikhin, S.A., Martekha, A. N., Andreev, V. N., Kaverina, Yu. E., Korotkiy, I. A. (2022). Rheological Properties of Mayonnaise with Non-Traditional Ingredients. Food Processing: Techniques and Technology, 52(4), 739–749. (In Russian) https://doi.org/10.21603/2074-9414-2022-4-2402
  37. Aussanasuwannakul, A., Pondicherry, K., Saengprakai, J. (2022). Rheological and tribological characterization of herbal sweet sauce with different stabilizing systems. CyTA — Journal of Food, 20(1), 158–171. https://doi.org/10.1080/19476337.2022.2107706
  38. Levent, O., Alpaslan, M. (2018). Effect of processing parameters on some physicochemical properties, sugar profile and rheological characterization of apricot sauce. Journal of Food Measurement and Characterization, 12, 1072–1083. https://doi.org/10.1007/s11694-018-9723-6
  39. Ahmed, J., Basu., S., Chandak, A. (2023). Rheology and rheological measurements of starch. Chapter in a book: Advances in Food Rheology and Its Applications (Second Edition). Woodhead Publishing. 2023. https://doi.org/10.1016/B978-0-12-823983-4.00016-9
  40. Thebaudin, J.-Y., Lefebvre, A.-C., Doublier, J.-L. (1998). Rheology of starch pastes from starches of different origins: Applications to starch-based sauces. LWT — Food Science and Technology, 31(4), 354–360. https://doi.org/10.1006/fstl.1998.0367
  41. Xu, F., Zhang, L., Liu, W., Liu, Q., Wang, F., Zhang, H. et al. (2021). Physicochemical and structural characterization of potato starch with different degrees of gelatinization. Foods, 10(5), Article 1104. https://doi.org/10.3390/foods10051104
  42. Okonkwo, V. C., Mba, O. I., Kwofie, E. M., Ngadi, M. O. (2021). Rheological properties of meat sauces as influenced by temperature. Food and Bioprocess Technology, 14, 2146–2160. https://doi.org/10.1007/s11947-021-02709-9
  43. Zhang, B., Qiao, D., Zhao, S., Lin, Q., Wang, J., Xie, F. (2021). Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends in Food Sciences and Technology, 114, 212–231. https://doi.org/10.1016/j.tifs.2021.05.033

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Glukharev A.Y., Bordiyan V.V., Kuzina T.D., Kuchina Y.A., Derkach S.R.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».