Macrophytes of the Baltic Sea ecosystem as a source of raw materials for the food industry
- Authors: Ulrikh E.V.1, Klyuchko N.Y.1, Agafonova S.V.1, Zemlyakova E.S.1, Sukhikh S.A.2, Kachanova A.V.1, Fedorova O.S.1
-
Affiliations:
- Kaliningrad State Technical University
- Immanuel Kant Baltic Federal University
- Issue: Vol 8, No 2 (2025)
- Pages: 276-285
- Section: Articles
- URL: https://journals.rcsi.science/2618-9771/article/view/310365
- DOI: https://doi.org/10.21323/2618-9771-2025-8-2-276-285
- ID: 310365
Cite item
Full Text
Abstract
Such types of resources as algae, aquatic plants (macrophytes) and their metabolites can be used as sources of biomass for complex processing. The purpose of this study is to study the diversity, peculiarities of growth and production of biologically active substances of macrophytes of the Baltic Sea ecosystem for the food, feed and nutraceutical industries. The macroalgae of the Baltic Sea are promising raw materials for the production of valuable biologically active compounds, as they are easily reproducible, do not require areas and special resources for accumulation. Significant amounts of algae can be found on the shore (storm emissions), that is, obtained without the cost of their extraction. Isolation of a complex of biologically active substances is the most suitable way to use their potential as antibacterial, antioxidant, anticarcinogenic, anti-inflammatory and hepatoprotective agents. Many of the coastal aquatic plants are available and multiply intensively, forming a significant amount of biomass, which currently has insufficient use in various fields of industry, agriculture, forestry, fish farming, medicine, etc. Macrophytes have high nutritional value and are promising raw materials for the isolation of both nutraceuticals and parapharmaceuticals. It is important to study the potential of duckweed for wastewater treatment, while it can be processed into valuable biomass for animal feed and the production of biologically active substances. The coastal aquatic plant radest has antioxidant activity and antibacterial action against both gram-negative and gram-positive microflora. Macrophyte teloresis is widespread in the Kaliningrad region. The high content of macronutrients such as magnesium, calcium and phosphorus in telorez improves the quality of feed and the efficiency of livestock production. In the future, in-depth research is needed into promising areas of processing biomass of aquatic plants in order to obtain biologically active substances for the food, feed and nutraceutical industries.
About the authors
E. V. Ulrikh
Kaliningrad State Technical University
Author for correspondence.
Email: asunyaykina54@gmail.com
1, Prospekt Sovetskiy, 236022, Kaliningrad
N. Yu. Klyuchko
Kaliningrad State Technical University
Email: asunyaykina54@gmail.com
1, Prospekt Sovetskiy, 236022, Kaliningrad
S. V. Agafonova
Kaliningrad State Technical University
Email: asunyaykina54@gmail.com
1, Prospekt Sovetskiy, 236022, Kaliningrad
E. S. Zemlyakova
Kaliningrad State Technical University
Email: asunyaykina54@gmail.com
1, Prospekt Sovetskiy, 236022, Kaliningrad
S. A. Sukhikh
Immanuel Kant Baltic Federal University
Email: asunyaykina54@gmail.com
236041, 14, Nevsky str., Kaliningrad
A. V. Kachanova
Kaliningrad State Technical University
Email: asunyaykina54@gmail.com
1, Prospekt Sovetskiy, 236022, Kaliningrad
O. S. Fedorova
Kaliningrad State Technical University
Email: asunyaykina54@gmail.com
1, Prospekt Sovetskiy, 236022, Kaliningrad
References
- Maja, M.M., Ayano, S.F. (2021). The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Systems and Environment, 5, 271–283. https://doi.org/10.1007/s41748-021-00209-6
- Nawaz, M.A., Azam, A., Bhatti, M.A. (2019). Natural resources depletion and economic growth: Evidence from ASEAN countries. Pakistan Journal of Economic Studies, 2(2), 155–172.
- Rasoulinezhad, E., Taghizadeh-Hesary, F., Taghizadeh-Hesary, F. (2020). How is mortality affected by fossil fuel consumption, CO 2 emissions and economic factors in CIS region? Energies, 13(9), Article 2255. https://doi.org/10.3390/en13092255
- Solis, C.A., Mayol, A.P., San Juan, J.G., Ubando, A.T., Culaba, A.B. (2020). Multiobjective optimal synthesis of algal biorefineries toward a sustainable circular bioeconomy. IOP Conference Series: Earth and Environmental Science, 463, Article 012051. https://doi.org/10.1088/1755–1315/463/1/012051
- FAO (2023). World Food and Agriculture — Statistical Yearbook. Rome. https://doi.org/10.4060/cc8166en
- Ubando, A.T., Felix, C.B., Chen, W.-H. (2019). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, 299, Article 122585. https://doi.org/10.1016/j.biortech.2019.122585
- Volodina, A.A., Gerb, M.A., Zvereva, A. Yu., Gorlach, A.A. (2022). Macrophytes of the Russian part of the Kaliningrad/Vistula Bay (Baltic Sea basin). Vestnik IKBFU. Natural and Medical Sciences, 4, 64–77. (In Russian) https://doi.org/10.5922/gikbfu-2022-4-6
- Tolpeznikaite, E., Bartkevics, V., Ruzauskas, M., Pilkaityte, R., Viskelis, P., Urbonaviciene, D. et al. (2021). Characterization of macro- and microalgae extracts bioactive compounds and micro- and macroelements transition from algae to extract. Foods, 10(9), Article 2226. https://doi.org/10.3390/foods10092226
- Tolpeznikaite, E., Ruzauskas, M., Pilkaityte, R., Bartkevics, V., Zavistanaviciute, P., Starkute, V. et al. (2021). Influence of fermentation on the characteristics of Baltic Sea macroalgae, including microbial profile and trace element content. Food Control, 129(15), Article 108235. https://doi.org/10.1016/j.foodcont.2021.108235
- Kulikova, Y., Sukhikh, S., Kalashnikova, O., Chupakhin, E., Ivanova, S., Chubarenko, B. et al. (2022). Assessment of the resource potential of baltic sea macroalgae. Applied Sciences, 12, Article 3599. https://doi.org/10.3390/app12073599
- Rinne, H., Kostamo, K. (2022). Distribution and species composition of red algal communities in the northern Baltic Sea. Estuarine, Coastal and Shelf Science, 269, Article 107806. https://doi.org/10.1016/j.ecss.2022.107806
- Matin, M., Koszarska, M., Atanasov, A.G., Król-Szmajda, K., Artur Jó´zwik, A., Stelmasiak A. et al. (2024). Bioactive potential of algae and algae-derived compounds: Focus on anti-inflammatory, antimicrobial, and antioxidant effects. Molecules, 29(19), Article 4695. https://doi.org/10.3390/molecules29194695
- Čmiková, N., Galovičová, M., Miškeje, M., Borotová, P., Kluz, P., Kačániová, M. (2022). Determination of antioxidant, antimicrobial activity, heavy metals and elements content of seaweed extracts. Plants, 11(11), Article 1493. https://doi.org/10.3390/plants11111493
- Luhila, Õ., Paalme, T., Tanilas, K., Sarand, I. (2022). Omega-3 fatty acid and B12 vitamin content in Baltic algae. Algal Research, 67, Article 102860. https://doi.org/10.1016/j.algal.2022.102860
- Balina, K., Ivanovs, K., Romagnoli, F., Blumberga, D. (2020). Comprehensive literature review on valuable compounds and extraction technologies: The Eastern Baltic Sea Seaweeds. Environmental and Climate Technologies, 24(2), 178–195. https://doi.org/10.2478/rtuect-2020-0065
- Li, C., Tang, T., Du, Y., Jiang, L., Yao, Z., Ning, L. et al. (2023). Ulvan and Ulva oligosaccharides: A systematic review of structure, preparation, biological activities and applications. Bioresources and Bioprocessing, 10, Article 66. https://doi.org/10.1186/s40643-023-00690-z
- Romero, A.M., Morales, J.J.P., Klose, L., Liese, A. (2023). Enzyme-assisted extraction of Ulvan from the green macroalgae Ulva fenestrate. Molecules, 28(19), Article 6781. https://doi.org/10.3390/molecules28196781
- Pari, R.F., Uju, U., Hardiningtyas, S.D., Ramadhan, W., Wakabayashi, R., Goto, M. et al. (2025). Ulva seaweed-derived Ulvan: A promising marine polysaccharide as a sustainable resource for biomaterial design. Marine Drugs, 23(2), Article 56. https://doi.org/10.3390/md23020056
- Flórez-Fernández, N., Rodríguez-Coello, A., Latire, T., Bourgougnon, N., Torres, M.D., Buján, M. et al. (2023). Anti-inflammatory potential of Ulvan. International Journal of Biological Macromolecules, 253(Part 4), Article 126936. https://doi.org/10.1016/j.ijbiomac.2023.126936
- Ou, J.-Y., Wei, Y.-J., Liu, F.-F., Huang, C.-H. (2023). Huang anti-allergic effects of Ulva-derived polysaccharides, oligosaccharides and residues in a murine model of food allergy. Heliyon, 9(12), Article e22840. https://doi.org/10.1016/j.heliyon.2023.e22840
- Khan, N., Sudhakar, K., Mamat, R. (2024). Eco-friendly nutrient from ocean: Exploring Ulva seaweed potential as a sustainable food source. Journal of Agriculture and Food Research, 17, Article 101239. https://doi.org/10.1016/j.jafr.2024.101239
- Barakat, K.M., Ismail, M.M, Abou El Hassayeb, H.E., El Sersy, N.A., Elshobary, M.E. (2022). Chemical characterization and biological activities of Ulvan extracted from Ulva fasciata (Chlorophyta). Rendiconti Lincei. Scienze Fisiche e Naturali, 33, 829–841. https://doi.org/10.1007/s12210-022-01103-7
- Li, Y., Ye, H., Wang, T., Wang, P., Liu, R., Li, Y. et al. (2020). Characterization of low molecular weight sulfate Ulva polysaccharide and its protective effect against IBD in mice. Marine Drugs, 18(10), Article 499. https://doi.org/10.3390/md18100499
- Pereira, L., Critchley, A.T. (2020). The COVID19 novel coronavirus pandemic 2020: Seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? Journal of Applied Phycology, 32, 1875–1877. https://doi.org/10.1007/s10811-020-02143-y
- Krangkratok, W., Chantorn, S., Choosuwan, P., Phomkaivon, N., La-ongkham, O., Kosawatpat, P. et al. (2023). Production of prebiotic ulvan-oligosaccharide from the green seaweed Ulva rigida by enzymatic hydrolysis. Biocatalysis and Agricultural Biotechnology, 54, Article 102922. https://doi.org/10.1016/j.bcab.2023.102922
- Liu, Z., Wang, M., Li, J., Guo, X., Guo, Q., Zhu, B. (2025). Differences in utilization and metabolism of Ulva lactuca polysaccharide by human gut Bacteroides species in the in vitro fermentation. Carbohydrate Polymers, 351, Article 123126. https://doi.org/10.1016/j.carbpol.2024.123126
- Yu, S., Sun, Y., Wang, Q., Wu, J., Liu, J. (2023). Extraction of bioactive polysaccharide from Ulva prolifera biomass waste toward potential biomedical application. International Journal of Biological Macromolecules, 235, Article 123852. https://doi.org/10.1016/j.ijbiomac.2023.123852
- Feng, Y., An, Z., Chen, H., He, X., Wang, W., Li, X. et al. (2020). Ulva prolifera extract alleviates intestinal oxidative stress via Nrf2 signaling in weaned piglets challenged with hydrogen peroxide. Frontiers in Immunology, 11, Article 599735. https://doi.org/10.3389/fimmu.2020.599735
- Sun, Y.-Y., Dong, S.-S., Zhang, N.-S., Zhou, J., Long, Z.-K. (2021). Screening and isolation of glyceroglycolipids with antialgal activity from several marine macroalgae. Journal of Applied Phycology, 33(4), 2609–2616. https://doi.org/10.1007/s10811-021-02466-4
- Sun, Y., Mu, Y., Li, T., Wang, S., Li, Y., Liu, J. et al. (2024). Extraction, isolation and biological activity of two glycolipids from Bangia fusco-purpurea. Marine Drugs, 22(4), Article 144. https://doi.org/10.3390/md22040144
- Pradhan, B., Patra, S., Nayak, R., Behera, C., Dash, S.R., Nayak, S. et al. (2020). Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. International Journal of Biological Macromolecules, 164, 4263–4278. https://doi.org/10.1016/j.ijbiomac.2020.09.019
- Zhu, Y., Wan, L., Li, W., Ni, D., Zhang, W., Yan, X. et al. (2020). Recent advances on 2′-fucosyllactose: Physiological properties, applications, and production approaches. Critical Reviews in Food Science and Nutrition, 1, 2083–2092. https://doi.org/10.1080/10408398.2020.1850413
- Hans, N., Malik, A., Naik, S. (2021). Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresource Technology Reports, 13, Article 100623. https://doi.org/10.1016/j.biteb.2020.100623
- Barzkar, N., Ivanova, S., Sukhikh, S., Malkov, D., Noskova, S., Babich, O. (2024). Phenolic compounds of brown algae. Food Bioscience, 62, Article 105374. https://doi.org/10.1016/j.fbio.2024.105374
- Cikoš, A.M., Šubarić, D., Roje, M., Babić, J., Jerković, I., Jokić, S. (2022). Recent advances on macroalgal pigments and their biological activities (2016–2021). Algal Research, 65, Article 102748. https://doi.org/10.1016/j.algal.2022.102748
- Piotrowicz, Z., Tabisz, L., Leska, B., Messyasz, B., Pankiewicz, R. (2022). Comparison of the antioxidant properties of green macroalgae from diverse European water habitats by use of several semi-quantitative assays. Molecules, 27(12), Article 3812. https://doi.org/10.3390/molecules27123812
- Freitas, M.V., Pacheco, D., Cotas, J., Mouga, T., Afonso, C., Pereira, L. (2022). Red seaweed pigments from a biotechnological perspective. Phycology, 2(1), 1–29. https://doi.org/10.3390/phycology2010001
- Punampalam, R., Khoo, K.S., Sit, N.W. (2018). Evaluation of antioxidant properties of phycobiliproteins and phenolic compounds extracted from Bangia atropurpurea. Malaysian Journal of Fundamental and Applied Sciences, 14(2), 289–297. https://doi.org/10.11113/mjfas.v14n2.1096
- Keramane, B., Sánchez-Camargo, A.P., Montero, L., Laincer, F., Bedjou, F., Ibañez, E. (2013). Pressurized liquid extraction of bioactive extracts with antioxidant and antibacterial activity from green, red and brown Algerian algae. Algal Research, 76, Article 103293. https://doi.org/10.1016/j.algal.2023.103293
- Saha, M., Rempt, M., Grosser, K., Pohnert, G., Weinberger, F. (2011). Surfaceassociated fucoxanthin mediates settlement of bacterial epiphytes on the rock-weed Fucus Vesiculosus. Biofouling, 27, 423–433. https://doi.org/10.1080/08927014.2011.580841
- Buedenbender, L., Astone, F.A., Tasdemir, D. (2020). bioactive molecular networking for mapping the antimicrobial constituents of the Baltic brown alga Fucus vesiculosus. Marine Drugs, 18(6), Article 311. https://doi.org/10.3390/md18060311
- Heavisides, E., Rouger, C., Reichel, A.F., Ulrich, C., Wenzel-Storjohann, A., Sebens, S. et al. (2018). Seasonal variations in the metabolome and bioactivity profile of Fucus vesiculosus extracted by an optimised, pressurised liquid extraction protocol. Marine Drugs, 16(12), Article 503. https://doi.org/10.3390/md16120503
- Geisen, U., Zenthoefer, M., Peipp, M., Kerber, J., Plenge, J., Managò, A. et al. (2015). Molecular mechanisms by which a Fucus vesiculosus extract mediates cell cycle inhibition and cell death in pancreatic cancer cells. Marine Drugs, 13(7), 4470–4491. https://doi.org/10.3390/md13074470
- Ullah, H., Gul, B., Khan, H., Zeb, U. (2021). Effect of salt stress on proximate composition of duckweed (Lemna minor L.). Heliyon, 7, Article e07399. https://doi.org/10.1016/j.heliyon.2021.e07399
- Ullah, H., Gul, B., Khan, H., Akhtar, N., Rehman, K.U., Zeb, U. (2022). Effect of growth medium nitrogen and phosphorus on nutritional composition of Lemna minor (an alternative fish and poultry feed). BMC Plant Biology, 22, Article 214. http://dx.doi.org/10.1186/s12870-022-03600-1
- Sonta, M., Więcek, J., Szara, E., Rekiel, A., Zalewska, A., Batorska, M. (2023). Quantitative and qualitative traits of duckweed (Lemna minor) produced on growth media with pig slurry. Agronomy, 13(7), Article 1951. https://doi.org/10.3390/agronomy13071951
- Okwuosa, O.B., Eyo, J.E., Amadi-Ibiam, C.O. (2021). Growth and nutritional profile of duckweed (Lemna minor) cultured with different organic Manure. International Advanced Research Journal in Science, Engineering and Technology, 8(12), 7–11. http://doi.org/10.17148/IARJSET.2021.81202
- Smith, K.E., Schäfer, M., Lim, M., Robles-Zazueta, C.A., Cowan, L., Fisk, L.D. et al. (2024). Aroma and metabolite profiling in duckweeds: Exploring species and ecotypic variation to enable wider adoption as a food crop. Journal of Agriculture and Food Research, 18, Article 101263. https://doi.org/10.1016/j.jafr.2024.101263
- Hu, Z., Fang, Y., Yi, Z., Tian, X., Li, J., Jin, Y. et al. (2022). Determining the nutritional value and antioxidant capacity of duckweed (Wolffia arrhiza) under artificial conditions. LWT, 153, Article 112477. https://doi.org/10.1016/j.lwt.2021.112477
- Krylova, YU.V., Kurashov, E.A., Mitrukova, G.G. (2016). The component composition of Potamogeton perfoliatus L. essential oil from Lake Ladoga at the beginning of the fruiting period. Himiya Rastitel’nogo Syr’ya, 2, 79–88. (In Russian) https://doi.org/10.14258/jcprm.2016021189
- Novichenko, O.V. (2016). Biologically active substances of higher aquatic plants Potamogeton perfoliatus L. and Zostera noltii: Composition, properties, application. Proceedings of the Voronezh State University of Engineering Technologies, 1(67), 137–142. (In Russian) https://doi.org/10.20914/2310-1202-2016-1-137-142
- Mukatova M. D., Salieva A. R. The method of complex processing of freshwater grass is the pierced-leaved rdest (Potamogeton perfoliatus). Patent RF 2447675C2. 2012. (In Russian)
- Mukatova M. D., Kabanin M. I., Salieva A. R. Method of obtaining chlorophyll from higher aquatic plants. Patent RF 2496813C2. 2013. (In Russian)
- Wang, S., He, G., Liu, Y., Wang, Y., Ma, Y., Fu, C. et al. (2024). A P1-like MYB transcription factor boosts biosynthesis and transport of C-glycosylated flavones in duckweed. International Journal of Biological Macromolecules, 277(2), 134–138. https://doi.org/10.1016/j.ijbiomac.2024.134138
- Ujong, A., Naibaho, J., Ghalamara, S., Tiwari, B.K., Hanon, S., Tiwari, U. (2024). Duckweed: Exploring its farm-to-fork potential for food production and biorefineries. Sustainable Food Technology, 3(1), 54–80. http://doi.org/10.1039/d4fb00288a
- Prosridee, K., Oonsivilai, R., Tira-aumphon, A., Singthong, J., Oonmetta-aree, J., Oonsivilai, A. (2023). Optimum aquaculture and drying conditions for Wolffia arrhiza (L.) Wimn. Heliyon, 9, Article e19730. https://doi.org/10.1016/j.heliyon.2023.e19730
- Xu, Y., Ma, S., Huang, M., Peng, M., Bog, M., Sree, S.K. et al. (2015). Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae). Hydrobiologia, 743, 75–87. http://doi.org/10.1007/s10750-014-2014-2
- Kutschera, U., Niklas, K.J. (2014). Darwin-wallace demons: Survival of the fastest in populations of duckweeds and the evolutionary history of an enigmatic group of angiosperms. Plant Biology, 17(s1), 24–32. https://doi.org/10.1111/plb.12171
- Hemalatha, М., Mohan, S.V. (2022). Duckweed biorefinery — Potential to remediate dairy wastewater in integration with microbial protein production. Bioresource Technology, 346, Article 126499. https://doi.org/10.1016/j.biortech.2021.126499
- Ministry of Agriculture of the Kaliningrad region: animal husbandry. Retrieved from: https://mcx.gov39.ru/zhivotnovodstvo /. Accessed March 10, 2025 (In Russian)
- Kaliningrad region. Farming. Agricultural industry. Retrieved from: https://bigenc.ru/c/kaliningradskaia-oblast-khoziaistvo-sel-skoe-khoziaistvo-2d43c7. Accessed March 10, 2025 (In Russian)
- Gerasimenko N. I. A method for processing brown algae. Patent RF, no. 2399298. 2010. (In Russian).
- Liu, Y., Xu, H., Wang, Y., Tang, X., He, G., Wang, S. et al. (2020). A submerged duckweed mutant with abundant starch accumulation for bioethanol production. Global Change Bioljgy Bioenergy, 12(12), 1078–1091. http://doi.org/10.1111/gcbb.12746
- Nikiforov, L.A., Belousov, M.V., Fursa, N.S. (2011). Study of amino-acid structure Lemna minor L.. Bulletin of Siberian Medicine, 10(5), 74–77. (In Russian)
- Duangjarus, N., Chaiworapuek, W., Rachtanapun, C., Ritthiruangdej, P., Charoensiddhi, S. (2022). Antimicrobial and functional properties of duckweed (Wolffia globosa) protein and peptide extracts prepared by ultrasound-assisted extraction. Foods, 11(15), Article 2348. https://doi.org/10.3390/foods11152348
- Nitiwuttithorn, C., Wongsasulak, S., Vongsawasdi, P., Yongsawatdigul, J. (2024). Effects of alkaline and ultrasonication on duckweed (Wolffia arrhiza) protein extracts’ physicochemical and techno-functional properties. Frontiers in Sustainable Food Systems, 8, Article 1343615. https://doi.org/10.3389/fsufs.2024.1343615
- Патент 2694969C1. Способ получения пектиновых веществ из ряски Lemna minor / Политаева Н. А., Смятская Ю. А., Опарина А. М. Опубл. 18.07.2019. [Politaeva N. A., Smyatskaya Y. A., Oparina A. M. A method for obtaining pectin substances from Lemna minor duckweed. Patent RF 2694969C1. 2019. (In Russian)]
- Vu, G., Xiang, X., Zhou, H., McClements, D.J. (2023). Lutein-fortified plant-based egg analogs designed to improve eye health: Formation, characterization, in vitro digestion, and bioaccessibility. Foods, 12(1), Article 2. https://doi.org/10.3390/foods12010002
- Yahaya, N., Hamdan, N.H., Zabidi, A.R., Mohamad, A.M., Suhaimi, M.L.H., Johari, M.A.A. et al. (2022). Duckweed as a future food: Evidence from metabolite profile, nutritional and microbial analyses. Future Foods, 5, Article 100128. https://doi.org/10.1016/j.fufo.2022.100128
- On-Nom, N., Promdang, P., Inthachat, W., Kanoongon, P., Sahasakul, Y., Chupeerach, C. et al. (2023). Wolffia globosa-based nutritious snack formulation with high protein and dietary fiber contents. Foods, 12(14), Article 2647. https://doi.org/10.3390/foods12142647
- Sela, I., Meir, A.Y., Brandis, A., Krajmalnik-Brown, R., Zeibich, L., Chang, D. et al. (2020). Wolffia globosa — Mankai plant-based protein contains bioactive vitamin B 12 and is well absorbed in humans. Nutrients, 12(10), Article 3067. https://doi.org/10.3390/nu12103067
- Rocchetti, G., Rebecchi, A., Zhang, L., Dallolio, M., Del Buono, D., Freschi, G. et al. (2023). The effect of common duckweed (Lemna minor L.) extract on the shelf-life of beef burgers stored in modified atmosphere packs: A metabolomics approach. Food Chemistry: X, 20, Article 101013. https://doi.org/10.1016/j.fochx.2023.101013
- Efremov, A.N., Sviridenko, B.F., Toma, C., Mesterházy, A., Murashko, Y.A. (2019). Ecology of Stratiotes aloides L. (Hydrochoritaceae) in Eurasia. Flora, 253, 116–126. https://doi.org/10.1016/j.flora.2019.03.009
- Cook, C.D.K., Urmi-König, K. (1983). A revision of the genus Stratiotes (hydrocharitaceae). Aquatic Botany, 16(3), 213–249. https://doi.org/10.1016/0304-3770(83)90035-9
- Efremov, A.N., Sviridenko, B.F. (2008). Ecobiomorph of the common watercreeper Stratiotes abides L. (Hydrocharitaceae) in the West Siberian part of its range. Biologiya Vnutrennikh Vod, 3, 29–34. (In Russian)
- Bobrov, Yu. A. Growth forms of Aquatic herbsin the Northeast of European Russia. Arctic Environmental Research, 17(2), 104–112. (In Russian) https://doi.org/10.17238/issn2541-8416.2017.17.2.104
- Efremov, A.N., Filonenko, A.V., Sviridenko, B.F. (2015). Anatomy and morphology of the reproductive organs of Stratiotes aloides L. (Hydrocharitaceae). Biologiya Vnutrennikh Vod, 4, 12–23. (In Russian). https://doi.org/10.7868/S0320965215040051
- Turner, B., Hameister, S., Hudler, A., Bernhardt, K.-G. (2021). Genetic diversity of Stratiotes aloides L. (Hydrocharitaceae) stands across Europe. Plants, 10(5), Article 863. https://doi.org/10.3390/plants10050863
- Germ, M., Gaberščik, A. (2025). Water or dry land — that is not a question for amphibious plant species. International Journal of Limnology, 61, Article 1. https://doi.org/10.1051/limn/2024025
- Efremov, A.N., Belgibaeva, A.M., Alyokhina, E.A., Filimonova, M.V., Sviridenko, B.F., Shalygin, S.P. et al. (2012). Composition structure of Stratiotes aloides (Hydrocharitaceae) in water bodies of the Medium Irtysh basin. Khimija Rastitel’nogo Syr’ja, 4, 161–166. (In Russian)
- Efremov, A.N., Alyokhina, E.A., Pimenova, D.E., Omargalieva, N.K. (2016). On the question of the amino acids and water-soluble vitamins content in some species of the family Hydrocharitaceae. Khimija Rastitel’nogo Syr’ja, 1, 85–91. (In Russian). https://doi.org/10.14258/jcprm.201601924
- Alyokhina, E. A. Efremov, A.N., Yemelyanova, O.A. (2018). Are the plants of the family Hydrocharitaceae a new source of tannins? Khimija Rastitel’nogo Syr’ja, 3, 179–184 (In Russian). https://doi.org/10.14258/jcprm.2018033723
- Kotelnaya, Ya.I., Alekhina, Е.А., Efremov, А. N. Bolotova Ya, V., Guselnikova, M.V., Nikolaenko S. A. et al. (2019). Notes on the saponins in the plants of the family Hydrocharitaceae. Botanica Pacifica: A Journal of Plant Science and Conservation, 8(1), 57–61. https://doi.org/10.17581/bp.2019.08101
- Isaykina, N.V., Kolomiets N. E., Abramets, N. Yu., Maryin, A.A. (2022) Study of stinging nettle herb (Urtica dioica L.), growing in some areas of the European part of Russia and Siberia. Khimija Rastitel’nogo Syr’ja, 3, 127–138. (In Russian). https://doi.org/10.14258/jcprm.20220310873
- Ryabinina, E.I., Zotova, E.E., Ponomareva, N.I. (2012). Potentiometric determination of tannins in medicinal plant raw materials. Farmatsiya, 2, 8–10. (In Russian)
- Efremov, A.N., Iminova, D.E., Alyokhina, E.A., Dyusembaev, S.T. (2017). The content of chemical elements in biomass of some species of the Hydrocharitaceae family. Khimija Rastitel’nogo Syr’ja, 1, 107–111. (In Russian). https://doi.org/10.14258/jcprm.2017011294
- Baykalova, L.P., Gorbachev, I.A. (2019). The influence of species composition of grasses on the content of macroelements and fodder units in pasture feed. Bulletin of KrasGAU, 11(152), 90–97 (In Russian). https://doi.org/10.36718/1819-4036-2019-11-90-97
- Rabinovich, G. Yu., Vasilyeva, E.A. (2024). Creation and prospects for the use of drugs for feed production and livestock livestock farming. The Agrarian Scientific Journal, 8, 95–102 (In Russian). https://doi.org/10.28983/asj.y2024i8pp95-102
- Rabinovich, G. Yu., Vasilyeva, E.A. (2019). Development and testing of premix with adaptogenic properties. Achievements of Science and Technology in Agro-Industrial Complex, 33(8), 72–76. (In Russian). https://doi.org/10.24411/0235-2451-2019-10816
- Lima, N.P., Maciel, G.M., Pinheiro, D.F., Ribeiro I. S., Lima, N.F., Liviz, C.A.M. et al. (2025). Innovative protein sources from freshwater and marine environments — A comprehensive review. Measurement: Food, 17, Article 100215. https://doi.org/10.1016/j.meafoo.2025.100215
- Morach, B., Witte, B., Walker, D., von Koeller, E., Grosse-Holz, F., Rogg, J. et al. (2021). Food for thought: The protein transformation. Industrial Biotechnology, 17(3), 125–133. https://doi.org/10.1089/ind.2021.29245.bwi
- Li, Y., Xiang, N., Zhu, Y., Yang, M., Shi, C., Tang, Y. et al. (2024). Blue source-based food alternative proteins: Exploring aquatic plant-based and cell-based sources for sustainable nutrition, Trends in Food Science and Technology, 147, Article 104439. https://doi.org/10.1016/j.tifs.2024.104439
- Raja, K., Kadirvel, V., Subramaniyan, T. (2022). Seaweeds, an aquatic plant-based protein for sustainable nutrition — A review. Future Foods, 5, Article 100142. https://doi.org/10.1016/j.fufo.2022.100142
- Farid, M.S., Anjum, R., Yang, Y., Tu, M., Zhang, T., Pan, D. et al. (2024). Recent trends in fermented plant-based analogues and products, bioactive peptides, and novel technologies-assisted fermentation. Trends in Food Science and Technology, 149, Article 104529. https://doi.org/10.1016/j.tifs.2024.104529
Supplementary files
