Systemic-ecological symbiosis model: integrating secondary resources into construction materials to enhance the environmental safety of machine-building enterprises

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The research addresses the integration of secondary resources from machine-building enterprises into construction composites as a pathway to reduce clinker consumption, lower the carbon footprint, and improve industrial sustainability. A symbiotic model was developed that links a machine-building plant as a donor of metallurgical, glass, and polymer by-products with construction material production as a recipient. The model operates on weekly “generation–utilization–storage” balances for production lots of 10 m³ and is optimized under three groups of constraints: economic (cost minimization), environmental (CO₂ intensity reduction), and technical (compressive strength, water absorption, and chloride permeability by RCPT). A multi-objective optimization scheme using ε-constraint methods was applied together with regression-based property models and stochastic simulations (Monte Carlo and bootstrap). The analysis demonstrates that partial clinker substitution with up to 50% ground granulated blast-furnace slag and up to 20% recycled glass achieves a 40–45% reduction in unit CO₂ emissions, while maintaining 28-day strength above 40 MPa and RCPT values within 2,000–3,000 C (Coulombs). The Pareto front highlights an equilibrium zone of 55–60% CO₂ and 84–87% relative cost as a rational compromise between environmental and economic performance. Statistical verification confirms the robustness of the solutions with failure probability Pf< 10%. Practical implications include the ability to design low-carbon mixtures with predictable durability, integrate secondary resource flows into construction supply chains with ≥95% utilization efficiency (and >97% for glass/ash streams), and reduce regulatory and environmental risks. The framework provides machine-building and construction industries with a reproducible methodology to scale decarbonization strategies while ensuring infrastructure reliability.

Авторлар туралы

N. Dmitriev

Peter the Great St.Petersburg Polytechnic University

ORCID iD: 0000-0003-0282-1163

A. Zaytsev

Peter the Great St.Petersburg Polytechnic University

ORCID iD: 0000-0002-4372-4207

T. Tabakova

Project Organization in Architecture "MGP"; Engineering and Design Bureau "PILLAR"

ORCID iD: 0009-0009-9736-2588

K. Alkin

Lianozovo Electromechanical Plant (LEMZ Division)

ORCID iD: 0009-0001-6857-7434

V. Aleksanyan

Yerevan State University

ORCID iD: 0000-0002-1352-0086

Әдебиет тізімі

  1. Ahmad J., Zhou Z., Martínez-García R., Vatin N.I., de-Prado-Gil J., El-Shorbagy M.A. Waste Foundry Sand in Concrete Production Instead of Natural River Sand: A Review. Materials. 2022. 15 (7). P. 2365. doi: 10.3390/ma15072365.
  2. Babafemi A.J., Šavija B., Paul S.C., Anggraini V. Engineering Properties of Concrete with Waste Recycled Plastic: A Review. Sustainability. 2018. 10 (11). P. 3875. doi: 10.3390/su10113875.
  3. Siddique R., Khatib J., Kaur I. Use of recycled plastic in concrete: a review. Waste Management. 2008. 28 (10). P. 1835 – 1852. doi: 10.1016/j.wasman.2007.09.011
  4. Huang L., Zhen L., Yin L. Waste material recycling and exchanging decisions for industrial symbiosis network optimization. Journal of Cleaner Production. 2020. 276. P. 124073. doi: 10.1016/j.jclepro.2020.124073
  5. Rihner M.C.S., Whittle J.W., Gadelhaq M.H.A., Mohamad S.N., Yuan R., Rothman R., Fletcher D.I., Walkley B., Koh L.S.C. Life cycle assessment in energy-intensive industries: cement, steel, glass, plastic. Renewable and Sustainable Energy Reviews. 2025. 211. P. 115245. doi: 10.1016/j.rser.2024.115245
  6. Cherubini F., Bargigli S., Ulgiati S. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy. Waste Management. 2008. 28 (12). P. 2552 – 2564. doi: 10.1016/j.wasman.2007.11.011
  7. Zaytsev A., Mihel E., Dmitriev N., Alferyev D., Laszlo U. Optimization of interaction with counterparties: selection game algorithm under uncertainty. Mathematics. 2024. 12 (13). P. 2079. doi: 10.3390/math12132079
  8. Simioni F.J., Soares J.F., Rosário J.A. de A., Sell L.G., Bertol E., Souza F.M.P., Santos Júnior E.P., Coelho Junior L.M. Industrial symbiosis and circular economy practices towards sustainability in forest-based clusters: case studies in Southern Brazil. Sustainability. 2024. 16 (21). P. 9258. doi: 10.3390/su16219258
  9. Chrysikopoulos S.K., Chountalas P.T., Georgakellos D.A., Lagodimos A.G. Modeling critical success factors for industrial symbiosis. Eng. 2024. 5 (4). P. 2902 – 2919. doi: 10.3390/eng5040151
  10. Filho J.J. de S., Paço A. do, Gaspar P.D. Artificial intelligence and MCDA in circular economy: governance strategies and optimization for reverse supply chains of solid waste. Applied Sciences. 2025. 15 (9). P. 4758. doi: 10.3390/app15094758
  11. Shahsavani I., Goli A. A systematic literature review of circular supply chain network design: application of optimization models. Environment, Development and Sustainability. 2023. Online first. doi: 10.1007/s10668-023-03362-2
  12. Zaytsev A., Dmitriev N., Sebbaggala T. Economic aspects of green energy development in the context of maintaining strategic sustainability and environmental conservation. IOP Conference Series. Earth and Environmental Science. 2022. 1111. P. 012080. doi: 10.1088/1755-1315/1111/1/012080
  13. Dmitriev N., Zaytsev A. Effectiveness of Lean Business Model in Ensuring the Circular Production. Proceedings of the 20th European Conference on Research Methodology for Business and Management Studies (ECRM 2021). Aveiro, Portugal. 2021. P. 322 – 330.
  14. Zaytsev A., Dmitriev N. Automated collection and processing of spatiotemporal data for the analysis of sustainable development in industrial systems. International Russian Smart Industry Conference (SmartIndustryCon). 2025. P. 1043 – 1050. doi: 10.1109/SmartIndustryCon65166.2025.10986205
  15. Gerasimova E.B., Melnikova L.A., Loseva A.V. Ecological safety of construction in single-industry town. Construction Materials and Products. 2023. 6(3). P. 59 – 78. doi: 10.58224/2618-7183-2023-6-3-59-78
  16. Matthes W., Vollpracht A., Villagran Zaccardi Y., Kamali-Bernard S., Hooton D., Gruyaert E., De Belie N. Ground granulated blast-furnace slag. In: De Belie N., Soutsos M., Gruyaert E. (eds). Properties of fresh and hardened concrete containing supplementary cementitious materials. 2018. P. 1 – 53. doi: 10.1007/978-3-319-70606-1_1
  17. Hanein T., Galvez-Martos J.-L., Bannerman M.N. Carbon footprint of calcium sulfoaluminate clinker production. Journal of Cleaner Production. 2018. 172. P. 2278 – 2287. doi: 10.1016/j.jclepro.2017.11.183
  18. Murtazaev S.-A.Yu., Salamanova M.Sh., Saidumov M.S., Gatsaev Z.Sh., Alaskhanov A.Kh., Murtazaeva T.S.-A. Development of geopolymer binders. Construction Materials and Products. 2024. 7(6). P. 4. doi: 10.58224/2618-7183-2024-7-6-4
  19. Liang Q., Huang X., Zhang L., Yang H. A review on research progress of corrosion resistance of alkali-activated slag cement concrete. Materials. 2024. 17 (20). P. 5065. doi: 10.3390/ma17205065
  20. Wu T., Tang S., Dong Y.-R., Luo J.-H. A review of the thermal and mechanical characteristics of alkali-activated composites at elevated temperatures. Buildings. 2025. 15(5). P. 738. doi: 10.3390/buildings15050738
  21. Yan W., Cheng H., Zhang M., Qin Y., Cao J., Cao X. Alkali-activated slag–fly ash–desert sand mortar for building applications: flowability, mechanical properties, sulfate resistance, and microstructural analysis. Buildings. 2025. 15 (12). P. 2069. doi: 10.3390/buildings15122069
  22. Klyuev S.V., Slobodchikova N.A., Saidumov M.S., Abumuslimov A.S., Mezhidov D.A., Khezhev T.A. Application of ash and slag waste from coal combustion in the construction of the earth bed of roads. Construction Materials and Products. 2024. 7 (6). P. 3. doi: 10.58224/2618-7183-2024-7-6-3
  23. Aguiar I., Cunha S., Aguiar J. Application of foundry wastes in eco-efficient construction materials: a review. Applied Sciences. 2025. 15 (1). P. 10. doi: 10.3390/app15010010
  24. Tangadagi R.B., Ravichandran P.T. Potential use of recycled foundry sand as fine aggregate in self-compacting concrete: sustainable engineering research. Buildings. 2025. 15 (5). P. 815. doi: 10.3390/buildings15050815
  25. Sandhu R.K. Sustainability in concrete construction: waste foundry sand (WFS) as a substitute for natural sand in self-compacting concrete (SCC). Advances in Construction Management. Lecture Notes in Civil Engineering. Vol. 618. 2025. Springer. doi: 10.1007/978-981-96-4898-6_17
  26. García Del Angel G., Sainz-Aja J.A., Tamayo P., Cimentada A., Cabrera R., Pestana L.R., Thomas C. Effect of recycled foundry sand on the workability and mechanical properties of mortar. Applied Sciences. 2023. 13 (6). P. 3436. doi: 10.3390/app13063436
  27. Bochare R., Dagliya M., Paliwal N., Karmakar H., Sharma A.R. Sustainable concrete production using toxic foundry sand and its subsequent effect on water contamination. Science of the Total Environment. 2024. 923. P. 171551. doi: 10.1016/j.scitotenv.2024.171551
  28. Poudel S., Bhetuwal U., Kharel P., Khatiwada S., KC D., Dhital S., Lamichhane B., Yadav S.K., Suman S. Waste glass as partial cement replacement: mechanical and fresh properties review. Buildings. 2025. 15 (6). P. 857. doi: 10.3390/buildings15060857
  29. Zhou C., Li M., Nguyen Q.D., Lin X., Castel A., Pang Y., Deng Z., Shi T., Mai C. Application of waste glass powder for sustainable concrete: design, performance, perspective. Materials. 2025. 18 (4). P. 734. doi: 10.3390/ma18040734
  30. Mansour M.A., Ismail M.H.B., Qadir Bux alias Imran Latif, Alshalif A.F., Milad A., Bargi W.A.A. A systematic review of the concrete durability incorporating recycled glass. Sustainability. 2023. 15 (4). P. 3568. doi: 10.3390/su15043568
  31. Redondo-Pérez N.M., Redondo-Mosquera J.D., Abellán-García J.A. Comprehensive overview of recycled glass as mineral admixture for circular UHPC solutions. Sustainability. 2024. 16 (12). P. 5077. doi: 10.3390/su16125077
  32. Younsi A., Mahi M.A., Hamami A.E.A., Belarbi R., Bastidas-Arteaga E. High-volume recycled waste glass powder cement-based materials: role of glass powder granularity. Buildings. 2023. 13 (7). P. 1783. doi: 10.3390/buildings13071783
  33. Hološová M.Č., Eštoková A., Lupták M. Rapid chloride permeability test of mortar samples with various admixtures. Engineering Proceedings. 2023. 57 (1). P. 36. doi: 10.3390/engproc2023057036
  34. Liao J., Wang Y., Sun X., Wang Y. Chloride penetration of surface-coated concrete: review and outlook. Materials. 2024. 17 (16). P. 4121. doi: 10.3390/ma17164121
  35. Oddo M.C., Cavaleri L., La Mendola L., Bilal H. Integrating plastic waste into concrete: sustainable solutions for the environment. Materials. 2024. 17 (14). P. 3408. doi: 10.3390/ma17143408
  36. Abduallah R., Burris L., Castro J., Sezen H. Utilization of different types of plastics in concrete mixtures. Construction Materials. 2025. 5 (2). P. 39. doi: 10.3390/constrmater5020039
  37. Mohamedsalih M.A., Radwan A.E., Alyami S.H., Abd El Aal A.K. The use of plastic waste as replacement of coarse aggregate in concrete industry. Sustainability. 2024. 16 (23). P. 10522. doi: 10.3390/su162310522
  38. Pasha M.S., Aslam M.F., Hamza M. Fire-resistant and eco-friendly concrete: investigating HDPE plastic and silica fume as partial replacements. Journal of Building Pathology and Rehabilitation. 2025. 11. Article 11. doi: 10.1007/s41024-025-00687-5
  39. Mashaan N.S., Ouano C.A.E. An investigation of the mechanical properties of concrete with different types of waste plastics for rigid pavements. Applied Mechanics. 2025. 6 (1). P. 9. doi: 10.3390/applmech6010009
  40. Szweda Z., Gołaszewski J., Ghosh P., Lehner P., Konečný P. Comparison of standardized methods for determining the diffusion coefficient of chloride in concrete with thermodynamic model of migration. Materials. 2023. 16 (2). P. 637. doi: 10.3390/ma16020637
  41. Bradshaw J., Si W., Khan M., McNally C. Emerging insights into the durability of 3D-printed concrete: recent advances in mix design parameters and testing. Designs. 2025. 9 (4). P. 85. doi: 10.3390/designs9040085
  42. Su Q., Latypov R., Chen S., Zhu L., Liu L., Guo X., Qian C. Life cycle assessment and environmental load management in the cement industry. Systems. 2025. 13 (7). P. 611. doi: 10.3390/systems13070611
  43. Coelho L.M.G. Comparative life cycle assessment of ultra-high-performance concrete with graphene oxide. Engineering Proceedings. 2025. 87 (1). P. 88. doi: 10.3390/engproc2025087088
  44. Yu F., Han F., Cui Z. Assessment of life cycle environmental benefits of an industrial symbiosis cluster in China. Environmental Science and Pollution Research. 2015. 22. P. 5511–5518. doi: 10.1007/s11356-014-3712-z
  45. Leiva H., Julian I., Ventura L., Wallin E., Vendt M., Fornell R., Galindo Paniagua F., Ascaso S., Gomez-Perez M. Advancing sustainability through industrial symbiosis: a technoeconomic approach using material flow cost accounting and cost–benefit analysis. Sustainability. 2025. 17 (6). P. 2730. doi: 10.3390/su17062730
  46. Agrela F., Rosales M., Alonso M.L., Ordóñez J., Cuenca-Moyano G.M. Life-cycle assessment and environmental costs of cement-based materials manufactured with mixed recycled aggregate and biomass ash. Materials. 2024. 17 (17). P. 4357. doi: 10.3390/ma17174357
  47. Sun R., Marmanilo M.M., Kulshreshtha S. Co-benefits of climate change mitigation from innovative agricultural water management: a case study of corn agroecosystem in eastern Canada. Mitigation and Adaptation Strategies for Global Change. 2023. 28. P. 47. doi: 10.1007/s11027-023-10080-7
  48. Simões J.C.T., Júnior S.V. Industrial symbiosis concept applied to green hydrogen production: a critical review based on bibliometric analysis. Discover Sustainability. 2024. 5. P. 504. doi: 10.1007/s43621-024-00780-8
  49. Kocherov Ye., Agabekova A., Ramatullaeva L., Mamitova A., Medeshev B., Razikov R., Syrlybekkyzy S., Kolesnikov A. Study of thermal-physical properties of porous ceramic insulation products. Construction Materials and Products. 2025. 8 (3). P. 7. doi: 10.58224/2618-7183-2025-8-3-7

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).