Systemic-ecological symbiosis model: integrating secondary resources into construction materials to enhance the environmental safety of machine-building enterprises
- Authors: Dmitriev N.D1, Zaytsev A.A1, Tabakova T.A2,3, Alkin K.A4, Aleksanyan V.5
-
Affiliations:
- Peter the Great St.Petersburg Polytechnic University
- Project Organization in Architecture "MGP"
- Engineering and Design Bureau "PILLAR"
- Lianozovo Electromechanical Plant (LEMZ Division)
- Yerevan State University
- Issue: Vol 8, No 5 (2025)
- Pages: 1-26
- Section: Articles
- URL: https://journals.rcsi.science/2618-7183/article/view/379653
- DOI: https://doi.org/10.58224/2618-7183-2025-8-5-1
- ID: 379653
Cite item
Full Text
Abstract
About the authors
N. D Dmitriev
Peter the Great St.Petersburg Polytechnic University
ORCID iD: 0000-0003-0282-1163
A. A Zaytsev
Peter the Great St.Petersburg Polytechnic University
ORCID iD: 0000-0002-4372-4207
T. A Tabakova
Project Organization in Architecture "MGP"; Engineering and Design Bureau "PILLAR"
ORCID iD: 0009-0009-9736-2588
K. A Alkin
Lianozovo Electromechanical Plant (LEMZ Division)
ORCID iD: 0009-0001-6857-7434
V. Aleksanyan
Yerevan State University
ORCID iD: 0000-0002-1352-0086
References
- Ahmad J., Zhou Z., Martínez-García R., Vatin N.I., de-Prado-Gil J., El-Shorbagy M.A. Waste Foundry Sand in Concrete Production Instead of Natural River Sand: A Review. Materials. 2022. 15 (7). P. 2365. doi: 10.3390/ma15072365.
- Babafemi A.J., Šavija B., Paul S.C., Anggraini V. Engineering Properties of Concrete with Waste Recycled Plastic: A Review. Sustainability. 2018. 10 (11). P. 3875. doi: 10.3390/su10113875.
- Siddique R., Khatib J., Kaur I. Use of recycled plastic in concrete: a review. Waste Management. 2008. 28 (10). P. 1835 – 1852. doi: 10.1016/j.wasman.2007.09.011
- Huang L., Zhen L., Yin L. Waste material recycling and exchanging decisions for industrial symbiosis network optimization. Journal of Cleaner Production. 2020. 276. P. 124073. doi: 10.1016/j.jclepro.2020.124073
- Rihner M.C.S., Whittle J.W., Gadelhaq M.H.A., Mohamad S.N., Yuan R., Rothman R., Fletcher D.I., Walkley B., Koh L.S.C. Life cycle assessment in energy-intensive industries: cement, steel, glass, plastic. Renewable and Sustainable Energy Reviews. 2025. 211. P. 115245. doi: 10.1016/j.rser.2024.115245
- Cherubini F., Bargigli S., Ulgiati S. Life cycle assessment of urban waste management: energy performances and environmental impacts. The case of Rome, Italy. Waste Management. 2008. 28 (12). P. 2552 – 2564. doi: 10.1016/j.wasman.2007.11.011
- Zaytsev A., Mihel E., Dmitriev N., Alferyev D., Laszlo U. Optimization of interaction with counterparties: selection game algorithm under uncertainty. Mathematics. 2024. 12 (13). P. 2079. doi: 10.3390/math12132079
- Simioni F.J., Soares J.F., Rosário J.A. de A., Sell L.G., Bertol E., Souza F.M.P., Santos Júnior E.P., Coelho Junior L.M. Industrial symbiosis and circular economy practices towards sustainability in forest-based clusters: case studies in Southern Brazil. Sustainability. 2024. 16 (21). P. 9258. doi: 10.3390/su16219258
- Chrysikopoulos S.K., Chountalas P.T., Georgakellos D.A., Lagodimos A.G. Modeling critical success factors for industrial symbiosis. Eng. 2024. 5 (4). P. 2902 – 2919. doi: 10.3390/eng5040151
- Filho J.J. de S., Paço A. do, Gaspar P.D. Artificial intelligence and MCDA in circular economy: governance strategies and optimization for reverse supply chains of solid waste. Applied Sciences. 2025. 15 (9). P. 4758. doi: 10.3390/app15094758
- Shahsavani I., Goli A. A systematic literature review of circular supply chain network design: application of optimization models. Environment, Development and Sustainability. 2023. Online first. doi: 10.1007/s10668-023-03362-2
- Zaytsev A., Dmitriev N., Sebbaggala T. Economic aspects of green energy development in the context of maintaining strategic sustainability and environmental conservation. IOP Conference Series. Earth and Environmental Science. 2022. 1111. P. 012080. doi: 10.1088/1755-1315/1111/1/012080
- Dmitriev N., Zaytsev A. Effectiveness of Lean Business Model in Ensuring the Circular Production. Proceedings of the 20th European Conference on Research Methodology for Business and Management Studies (ECRM 2021). Aveiro, Portugal. 2021. P. 322 – 330.
- Zaytsev A., Dmitriev N. Automated collection and processing of spatiotemporal data for the analysis of sustainable development in industrial systems. International Russian Smart Industry Conference (SmartIndustryCon). 2025. P. 1043 – 1050. doi: 10.1109/SmartIndustryCon65166.2025.10986205
- Gerasimova E.B., Melnikova L.A., Loseva A.V. Ecological safety of construction in single-industry town. Construction Materials and Products. 2023. 6(3). P. 59 – 78. doi: 10.58224/2618-7183-2023-6-3-59-78
- Matthes W., Vollpracht A., Villagran Zaccardi Y., Kamali-Bernard S., Hooton D., Gruyaert E., De Belie N. Ground granulated blast-furnace slag. In: De Belie N., Soutsos M., Gruyaert E. (eds). Properties of fresh and hardened concrete containing supplementary cementitious materials. 2018. P. 1 – 53. doi: 10.1007/978-3-319-70606-1_1
- Hanein T., Galvez-Martos J.-L., Bannerman M.N. Carbon footprint of calcium sulfoaluminate clinker production. Journal of Cleaner Production. 2018. 172. P. 2278 – 2287. doi: 10.1016/j.jclepro.2017.11.183
- Murtazaev S.-A.Yu., Salamanova M.Sh., Saidumov M.S., Gatsaev Z.Sh., Alaskhanov A.Kh., Murtazaeva T.S.-A. Development of geopolymer binders. Construction Materials and Products. 2024. 7(6). P. 4. doi: 10.58224/2618-7183-2024-7-6-4
- Liang Q., Huang X., Zhang L., Yang H. A review on research progress of corrosion resistance of alkali-activated slag cement concrete. Materials. 2024. 17 (20). P. 5065. doi: 10.3390/ma17205065
- Wu T., Tang S., Dong Y.-R., Luo J.-H. A review of the thermal and mechanical characteristics of alkali-activated composites at elevated temperatures. Buildings. 2025. 15(5). P. 738. doi: 10.3390/buildings15050738
- Yan W., Cheng H., Zhang M., Qin Y., Cao J., Cao X. Alkali-activated slag–fly ash–desert sand mortar for building applications: flowability, mechanical properties, sulfate resistance, and microstructural analysis. Buildings. 2025. 15 (12). P. 2069. doi: 10.3390/buildings15122069
- Klyuev S.V., Slobodchikova N.A., Saidumov M.S., Abumuslimov A.S., Mezhidov D.A., Khezhev T.A. Application of ash and slag waste from coal combustion in the construction of the earth bed of roads. Construction Materials and Products. 2024. 7 (6). P. 3. doi: 10.58224/2618-7183-2024-7-6-3
- Aguiar I., Cunha S., Aguiar J. Application of foundry wastes in eco-efficient construction materials: a review. Applied Sciences. 2025. 15 (1). P. 10. doi: 10.3390/app15010010
- Tangadagi R.B., Ravichandran P.T. Potential use of recycled foundry sand as fine aggregate in self-compacting concrete: sustainable engineering research. Buildings. 2025. 15 (5). P. 815. doi: 10.3390/buildings15050815
- Sandhu R.K. Sustainability in concrete construction: waste foundry sand (WFS) as a substitute for natural sand in self-compacting concrete (SCC). Advances in Construction Management. Lecture Notes in Civil Engineering. Vol. 618. 2025. Springer. doi: 10.1007/978-981-96-4898-6_17
- García Del Angel G., Sainz-Aja J.A., Tamayo P., Cimentada A., Cabrera R., Pestana L.R., Thomas C. Effect of recycled foundry sand on the workability and mechanical properties of mortar. Applied Sciences. 2023. 13 (6). P. 3436. doi: 10.3390/app13063436
- Bochare R., Dagliya M., Paliwal N., Karmakar H., Sharma A.R. Sustainable concrete production using toxic foundry sand and its subsequent effect on water contamination. Science of the Total Environment. 2024. 923. P. 171551. doi: 10.1016/j.scitotenv.2024.171551
- Poudel S., Bhetuwal U., Kharel P., Khatiwada S., KC D., Dhital S., Lamichhane B., Yadav S.K., Suman S. Waste glass as partial cement replacement: mechanical and fresh properties review. Buildings. 2025. 15 (6). P. 857. doi: 10.3390/buildings15060857
- Zhou C., Li M., Nguyen Q.D., Lin X., Castel A., Pang Y., Deng Z., Shi T., Mai C. Application of waste glass powder for sustainable concrete: design, performance, perspective. Materials. 2025. 18 (4). P. 734. doi: 10.3390/ma18040734
- Mansour M.A., Ismail M.H.B., Qadir Bux alias Imran Latif, Alshalif A.F., Milad A., Bargi W.A.A. A systematic review of the concrete durability incorporating recycled glass. Sustainability. 2023. 15 (4). P. 3568. doi: 10.3390/su15043568
- Redondo-Pérez N.M., Redondo-Mosquera J.D., Abellán-García J.A. Comprehensive overview of recycled glass as mineral admixture for circular UHPC solutions. Sustainability. 2024. 16 (12). P. 5077. doi: 10.3390/su16125077
- Younsi A., Mahi M.A., Hamami A.E.A., Belarbi R., Bastidas-Arteaga E. High-volume recycled waste glass powder cement-based materials: role of glass powder granularity. Buildings. 2023. 13 (7). P. 1783. doi: 10.3390/buildings13071783
- Hološová M.Č., Eštoková A., Lupták M. Rapid chloride permeability test of mortar samples with various admixtures. Engineering Proceedings. 2023. 57 (1). P. 36. doi: 10.3390/engproc2023057036
- Liao J., Wang Y., Sun X., Wang Y. Chloride penetration of surface-coated concrete: review and outlook. Materials. 2024. 17 (16). P. 4121. doi: 10.3390/ma17164121
- Oddo M.C., Cavaleri L., La Mendola L., Bilal H. Integrating plastic waste into concrete: sustainable solutions for the environment. Materials. 2024. 17 (14). P. 3408. doi: 10.3390/ma17143408
- Abduallah R., Burris L., Castro J., Sezen H. Utilization of different types of plastics in concrete mixtures. Construction Materials. 2025. 5 (2). P. 39. doi: 10.3390/constrmater5020039
- Mohamedsalih M.A., Radwan A.E., Alyami S.H., Abd El Aal A.K. The use of plastic waste as replacement of coarse aggregate in concrete industry. Sustainability. 2024. 16 (23). P. 10522. doi: 10.3390/su162310522
- Pasha M.S., Aslam M.F., Hamza M. Fire-resistant and eco-friendly concrete: investigating HDPE plastic and silica fume as partial replacements. Journal of Building Pathology and Rehabilitation. 2025. 11. Article 11. doi: 10.1007/s41024-025-00687-5
- Mashaan N.S., Ouano C.A.E. An investigation of the mechanical properties of concrete with different types of waste plastics for rigid pavements. Applied Mechanics. 2025. 6 (1). P. 9. doi: 10.3390/applmech6010009
- Szweda Z., Gołaszewski J., Ghosh P., Lehner P., Konečný P. Comparison of standardized methods for determining the diffusion coefficient of chloride in concrete with thermodynamic model of migration. Materials. 2023. 16 (2). P. 637. doi: 10.3390/ma16020637
- Bradshaw J., Si W., Khan M., McNally C. Emerging insights into the durability of 3D-printed concrete: recent advances in mix design parameters and testing. Designs. 2025. 9 (4). P. 85. doi: 10.3390/designs9040085
- Su Q., Latypov R., Chen S., Zhu L., Liu L., Guo X., Qian C. Life cycle assessment and environmental load management in the cement industry. Systems. 2025. 13 (7). P. 611. doi: 10.3390/systems13070611
- Coelho L.M.G. Comparative life cycle assessment of ultra-high-performance concrete with graphene oxide. Engineering Proceedings. 2025. 87 (1). P. 88. doi: 10.3390/engproc2025087088
- Yu F., Han F., Cui Z. Assessment of life cycle environmental benefits of an industrial symbiosis cluster in China. Environmental Science and Pollution Research. 2015. 22. P. 5511–5518. doi: 10.1007/s11356-014-3712-z
- Leiva H., Julian I., Ventura L., Wallin E., Vendt M., Fornell R., Galindo Paniagua F., Ascaso S., Gomez-Perez M. Advancing sustainability through industrial symbiosis: a technoeconomic approach using material flow cost accounting and cost–benefit analysis. Sustainability. 2025. 17 (6). P. 2730. doi: 10.3390/su17062730
- Agrela F., Rosales M., Alonso M.L., Ordóñez J., Cuenca-Moyano G.M. Life-cycle assessment and environmental costs of cement-based materials manufactured with mixed recycled aggregate and biomass ash. Materials. 2024. 17 (17). P. 4357. doi: 10.3390/ma17174357
- Sun R., Marmanilo M.M., Kulshreshtha S. Co-benefits of climate change mitigation from innovative agricultural water management: a case study of corn agroecosystem in eastern Canada. Mitigation and Adaptation Strategies for Global Change. 2023. 28. P. 47. doi: 10.1007/s11027-023-10080-7
- Simões J.C.T., Júnior S.V. Industrial symbiosis concept applied to green hydrogen production: a critical review based on bibliometric analysis. Discover Sustainability. 2024. 5. P. 504. doi: 10.1007/s43621-024-00780-8
- Kocherov Ye., Agabekova A., Ramatullaeva L., Mamitova A., Medeshev B., Razikov R., Syrlybekkyzy S., Kolesnikov A. Study of thermal-physical properties of porous ceramic insulation products. Construction Materials and Products. 2025. 8 (3). P. 7. doi: 10.58224/2618-7183-2025-8-3-7
Supplementary files
