Using the Python programming environment to calculate and simulate physical processes
- Authors: Andreeva P.V.1, Filippova O.O.1
-
Affiliations:
- Derzhavin Tambov State University
- Issue: Vol 7, No 3 (2023)
- Pages: 402-406
- Section: Математика
- Published: 14.01.2026
- URL: https://journals.rcsi.science/2542-2340/article/view/365543
- ID: 365543
Cite item
Full Text
Abstract
The Python programming language is currently the best tool for modeling complex physical processes. The most important application areas for Python are web development, machine learning, artificial intelligence, and process automation. In the last two, mathematical calculations and mapping of physical processes play a huge role. Artificial intelligence is one of the most popular examples of using the Python language, namely, working with neural networks, classifying images or speech messages. The analysis of audio data is carried out and various ways of processing sound files are considered.
About the authors
Polina V. Andreeva
Derzhavin Tambov State University
Email: madam.koltsova2009@yandex.ru
Master’s Degree Student of Mathematics (Teaching Mathematics and Computer Science)
Russian Federation, 33 Internatsionalnaya St., Tambov, 392000, Russian FederationOlga Olga Filippova
Derzhavin Tambov State University
Author for correspondence.
Email: philippova.olga@rambler.ru
Candidate of Physics and Mathematics, Associate Professor, Associate Professor of the Functional Analysis Department
Russian Federation, 33 Internatsionalnaya St., Tambov, 392000, Russian FederationReferences
- Леванов Е.И., Михайлов А.П., Новиков В.Г. V Всесоюзная школа молодых ученых «Численные методы решения задач математической физики» // Дифференциальные уравнения. 1982. Т. 18. № 7. С. 1281-1282. URL: https://www.mathnet.ru/links/
- aa31908b9014c2d8c252282fa362f/de4621.pdf
- Bratus A., Dimentberg M., Lourtchenco D. Optimal bounded response control for a second-order system under a white-noise excitation // Journal of Vibration and Control. 2000. Vol. 6. P.741-735. https://doi.org/10.1177/1077546316670072
- Filimonov A. M. Continuous approximationsof difference operators // Journal of Difference Equation and Applications. 1996. Vol. 2. №. 4. P. 411-422. https://doi.org/10.1080/10236199608808075
- Черников А.С., Горбунова Т.Н. Визуализация моделирования физических законов // Международный студенческий научный вестник. 2018. № 1. С. 67-73. https://elibrary.ru/nrupgd
Supplementary files

