MMGU Herald

Научный журнал, посвященный вопросам экономики и управления городским хозяйством, служит площадкой для обсуждения актуальных проблем городской экономики, стратегического планирования и управления городом.
 
Основные направления исследований, освещаемых в журнале:
• экономическая теория и практика управления городом;
• финансы, бюджетное планирование, налоговая политика;
• социально-экономическое развитие мегаполисов и регионов;
• инструменты цифровой экономики и инновационные технологии;
• управление городской инфраструктурой и инвестиционные стратегии.
 
Журнал публикует статьи по следующим научным специальностям классификатора ВАК:
5.2.1. Экономическая теория;
5.2.2. Математические, статистические и инструментальные методы в экономике;
5.2.3. Региональная и отраслевая экономика;
5.2.4. Финансы;
5.2.6. Менеджмент.
 
Целевая аудитория - руководители органов власти, эксперты в области экономики и управления, представители бизнес-сообщества, преподаватели, аспиранты и студенты, изучающие вопросы городского управления.

Ағымдағы шығарылым

№ 3 (69) (2025): NO3 (69) (2025)

Бүкіл шығарылым

Articles

Managing a digital metropolis: the next stage
Fomenko A.
MMGU Herald. 2025;(3 (69)):2-2
pages 2-2 views
Economic Effects of Digital Transformation
Presnetsova V., Presnyakov V.
Аннотация
This article examines the economic effects and structural contradictions of digital transformation. In the context of digitization, states face deepening digital inequality, employment challenges due to job reduction from automation, fundamental changes in the labor market, a shortage of IT specialists, fragmentation of digital infrastructure, and dependence of public administration on a limited number of IT companies. Mitigating risks requires changes in innovation policy. Its priorities should include digital inclusion measures, large-scale workforce training programs, and developer support initiatives to ensure technological sovereignty. At the same time, digital transformation yields positive effects, including growth in labor productivity. A comparative analysis of international models confirms the absence of a universal solution; however, all approaches prioritize human capital, scalable digital infrastructure, and institutional predictability. For Russia, development prospects are linked to overcoming digital disparities between regions through internet development, the creation of digital clusters, deep modernization of educational programs, and stimulation of long-term investments in the technology sector.
MMGU Herald. 2025;(3 (69)):3-9
pages 3-9 views
Modeling Economic Risks in Megacities
Kurkin A.
Аннотация
At the megacity level, in contrast to the regional or national level, economic risks are multidimensional and interconnected, necessitating the application of mathematical modeling for their identification and assessment. The sustainable development of megacities is impossible without a comprehensive analysis of threats. This article systematizes the main groups of megacity risks: financial-economic, socio-economic, infrastructural and spatial, environmental, resource-related, technological, and digital. Risks do not exist in isolation but form a network of mutual influence; the materialization of one risk increases the probability of others. To formalize the analysis, a probabilistic model based on the Kolmogorov axiomatics is employed to estimate the probability of an event occurrence and the magnitude of its impact. A network-based dynamic model is constructed to describe the mutual influence of risks and their evolution over time, thereby accounting for cascade effects and enabling more accurate forecasting of consequences. The proposed models can be utilized by government bodies and business entities for strategic planning, enhancing investment attractiveness, and minimizing the negative impacts of crisis situations.
MMGU Herald. 2025;(3 (69)):10-19
pages 10-19 views
Economic Density of Industrial Sectors in Moscow
Shmeleva A.
Аннотация
This article examines the spatial distribution of industrial enterprises across various sectors in the administrative districts of Moscow. The key metric employed is the economic density of an industry, which reflects the number of enterprises per unit area of a district. This measure accounts for differences in district sizes and enables a correct comparative analysis of territories. The statistical data obtained from the Open Data Portal of the Moscow Government was analyzed. In particular, the cluster analysis was conducted and a dendrogram was constructed to illustrate the similarity of districts based on their industrial structure. Herfindahl - Hirschman Indices (HHI) are computed to assess the degree of industrial specialization within Moscow's administrative districts, and localization coefficients are calculated to identify sectors with an elevated concentration in specific districts. Districts with a high degree of specialization (for example, the Zelenograd Administrative District is dominated by radio-electronic enterprises) as well as those with a diversified industrial structure were identified. For most industries, a near-linear decrease in economic density across districts is observed, indicating a balanced distribution of enterprises. Deviations from this trend are explained by the historically established concentration of high-tech industries in certain districts. The study's results hold practical significance for industrial policy and urban planning strategies.
MMGU Herald. 2025;(3 (69)):20-33
pages 20-33 views
Infrastructure of Waste Accumulation Sites in Moscow: Spatial Statistics and Analysis
Ostanina O.
Аннотация
This article examines the application of spatial statistics methods to analyze the distribution of municipal solid waste accumulation sites in Moscow. This research is relevant for optimizing waste collection infrastructure in megacities. Utilizing spatial data and cartographic materials, an algorithm was developed and tested to calculate the density of facility placement, linked to the area of courtyard territories, using a 1 km2 grid. The result was the construction of heat maps reflecting the heterogeneity in the distribution of different types of facilities across the urban area. Statistical characteristics, such as the mean and variance of specific density, were computed. The study provides a comparison of the obtained metrics with analogous values for other major world megacities. Particular attention is given to the analysis of the economic aspects of the identified heterogeneity. The presented algorithm and statistical indicators can be used by municipal authorities and specialized organizations to optimize the planning of waste collection networks and enhance the environmental sustainability of the urban environment.
MMGU Herald. 2025;(3 (69)):34-40
pages 34-40 views
A Study of the Relationship between Wage Dynamics in the Public and Private Sectors of the Economy
Myasnikov A.
Аннотация
This article presents the results of an empirical study examining the relationship between wage dynamics in the public (social services, science) and private sectors at the regional level from 2013 to 2024. Using data from Rosstat and a Vector Error Correction Model (VECM), cointegration of the time series was confirmed. The findings indicate a significant relationship between wage movements in these two sectors. In the long run, wage dynamics are primarily driven by the private sector, while the public sector adjusts to these changes. In the short term, a statistically significant effect of public sector wage growth on the private sector was observed (p = 0.06, Wald test), particularly in regions with low income levels and a high share of workers affected by the 2012 "May Decrees" of the President of the Russian Federation. The analysis revealed a trend toward a reduction in the intersectoral wage gap until 2021, followed by a sharp increase by 2024, which is attributed to institutional differences in the flexibility of personnel decision-making.
MMGU Herald. 2025;(3 (69)):41-47
pages 41-47 views
Developing a Competencies Model for Teaching and Educational Support Staff
Sokolov L.
Аннотация
This article addresses issues of human resource management in educational organizations based on a competency-based approach. The use of standard competencies outlined in documents such as the Federal State Educational Standard has certain limitations due to the generic nature of their formulations and their lack of adaptation to the specific features of a particular organization or its structural units. The comprehensive application of job analysis methods (strategic analysis, repertory grids, critical incident technique, direct attributes) enables the development of an adapted competencies model with behavioral indicators. Using kindergarten teachers as an example, a model comprising seven competencies was created: "Relationship Building," "Teamwork," "Systemic Thinking," "Organizational Skills," "Self-Development," "Stress Resistance," and "Motivational Persuasion." This model served as the foundation for developing human resource management tools, including competency-based interview questions, checklists for workplace assessment and certification procedures, and a digital profile for evaluation using psychometric tools (tests and personality questionnaires).
MMGU Herald. 2025;(3 (69)):48-53
pages 48-53 views
Managing Digital Transformation of an Urban University: Methodological Foundations and Managerial Practices
Konev D.
Аннотация

This article substantiates the application of innovative practices in developing a digital transformation strategy for an urban university. Drawing on Pierre Bourdieu's field theory, concepts of fractal and rhizomatic structures (H.-J. Warnecke; G. Deleuze, F. Guattari), and design thinking methodology, the university's digital environment is conceptualized as a multilayered system of self-similar "fragments." The study identifies features of the self-similar structure of the university's social space at a theoretical level and provides an empirical analysis of the digital experience of the Moscow Metropolitan Governance Yuri Luzhkov Univesity. Critical discourse analysis, user journey mapping, and empathy maps were employed to gather empirical data. Four categories of "pain points" were identified (infrastructural, interface-related, institutional, and behavioral), along with five distinct user personas. A modular, role-sensitive architecture for the digital campus is proposed, enabling local solutions to be scaled without loss of context. Based on hypotheses linking self-similarity (fractality), user-centricity, and design thinking tools, methods for developing the university's digital environment are suggested. The findings contribute to domestic research on client-centricity and change management in higher education and are aimed at university administrators responsible for digital development.

MMGU Herald. 2025;(3 (69)):54-64
pages 54-64 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».