Adaptive testing in teaching foreign languages: development and application of intelligent assessment systems
- Authors: Bocharova M.N1
-
Affiliations:
- Financial University under the Government of the Russian Federation
- Issue: No 7 (2025)
- Pages: 359-368
- Section: Articles
- URL: https://journals.rcsi.science/2541-8459/article/view/371637
- ID: 371637
Cite item
Abstract
the aim of the study is to analyze the principles of development and features of the application of intelligent systems for adaptive testing in the process of teaching foreign languages. The study is based on a comprehensive methodology that combines general scientific methods of system analysis of theoretical concepts, synthesis of practical solutions and modeling of architectural components with special methods of critical analysis of existing information solutions, analysis of specific cases of application and comparative analysis of approaches to the implementation of intelligent technologies in language education. The methodological approach includes the analysis of technical aspects of automatic speech recognition, syntactic analysis and semantic networks in the context of their didactic significance for the personalization of the educational process. The study resulted in the development of a conceptual model of adaptive testing based on the integration of a multi-level architecture with psycholinguistic principles of language acquisition, including a phonetic module with automatic speech recognition technologies, a syntactic module based on natural language processing, and a lexical component integrating semantic networks with corpus data. The use of multiparameter analysis using Bayesian networks provides dynamic adjustment of task complexity in accordance with the concept of the zone of proximal development. The study confirmed a statistically significant improvement in students' language competencies when using adaptive technologies and revealed the need for an integrated approach to the implementation of systems, including step-by-step implementation and training of teaching staff.
About the authors
M. N Bocharova
Financial University under the Government of the Russian Federation
References
- Грибова В.В., Клещев А.С., Москаленко Ф.М., Тимченко В.А., Федорищев Л.А., Шалфеева Е.А. Облачная платформа IACPaaS для разработки оболочек интеллектуальных сервисов: состояние и перспективы развития // Программные продукты и системы. 2018. Т. 31, № 3. С. 527 – 536. DOI: https://doi.org/10.15827/0236-235X.031.3.527-536
- Иванесов В.С. Применение педагогических измерений и новых образовательных технологий для модернизации образования // Педагогические измерения. 2015. № 1. С. 3 – 28.
- Казиев В.М., Казиева Б.В. Тестирование в современном высшем образовании. М.: ИНТУИТ. 2015. С.137
- Каплун О.А., Лаврищев А.И. Определение целей проведения тестирования для правильной интерпретации его результатов // Научный диалог. 2018. № 7. С. 320 – 330.
- Липина В.Е. Адаптивное обучающее тестирование в школьном курсе английского языка // Современные проблемы науки и образования. 2024. № 2. С. 1 – 12. DOI: https://doi.org/10.17513/spno.33375
- Самофалова М.В. Адаптивное обучение как новая образовательная технология // Гуманитарные и социальные науки. 2020. № 6. С. 341 – 347
- Чичерина Н., Жаркынбекова Ш., Азаматова А., Ахметбекова А. Оптимизация адаптивного изучения языков с использованием искусственного интеллекта // Вестник КУ имени Ш.Уалиханова. Серия филологическая. 2024. № 3. С. 279 – 290. DOI: https://doi.org/10.59102/kufil/2024/iss3pp279-290. ISSN 2788-7979
- Яламов Г.Ю., Шихнабиева Т.Ш. Адаптивные образовательные информационные системы: подходы к интеллектуализации // Человек и образование. 2018. № 4 (57). С. 85 – 90.
- Chemerys H.Yu., Osadcha K., Osadchyi V., Semerikov S.O. The Review of the Adaptive Learning Systems for the Formation of Individual Educational Trajectory. 2020. P. 1 – 13.
- Delgado O.K., Fay A.A., Sebastiany M.J., Silva A.D.C. Artificial intelligence adaptive learning tools: The teaching of English in focus // BELT – Brazilian English Language Teaching Journal. 2020. Vol. 11. № 2. P. 1 – 19. DOI: https://doi.org/10.15448/2178-3640.2020.2.38749.
- Eggen Theo J. Multi-Segment Computerized Adaptive Testing for Educational Testing Purposes // Front. Educ. 2018. № 3. P. 1-8. DOI: https://doi.org/10.3389/feduc.2018.00111
- Ganeesh G., Rani M.M.A. Role of Artificial Intelligence in English Language Teaching // International Journal of Research Publication and Reviews. 2023. Vol. 4, № 11. P. 2418 – 2420
- Huang X., Zou D., Cheng G., Chen X., Xie H. Trends, Research Issues and Applications of Artificial Intelligence in Language Education // Educational Technology & Society. 2023. Vol. 26. № 1. P. 112 – 131. DOI: https://doi.org/10.30191/ETS.202301_26(1).0009
- Karsenti T., Kozarenko O.M., Skakunova V.A. Digital Technologies in Teaching and Learning Foreign Languages: Pedagogical Strategies and Teachers' Professional Competence // Education and Self Development. 2020. Vol. 15, № 3. P. 76-88. DOI: https://doi.org/10.26907/esd15.3.07
- Kemelbekova Z., Degtyareva K., Yessenaman S., Ismailova D., Seidaliyeva G. AI in teaching English as a foreign language: Effectiveness and prospects in Kazakh higher education // XLinguae. 2024. Vol. 17. № 1. P. 69 – 83. DOI: https://doi.org/10.18355/XL.2024.17.01.05
- Kingsbury G., Wise S. Three Measures of Test Adaptation Based on Optimal Test Information // Journal of Computerized Adaptive Testing. 2020. Vol. 8. № 1. P. 1 – 19.
- Kushmar L.V., Vornachev A.O., Korobova I.O., Kaida N.O. Artificial Intelligence in Language Learning: What Are We Afraid of // Arab World English Journal (AWEJ). 2022. Special Issue on CALL. № 8. P. 262 – 273. DOI: https://doi.org/10.24093/awej/call8.18
- Mohammadi M. Language teachers' assessment literacy in AI-aided adaptive learning environments // Journal of Research in Applied Linguistics. 2024. Vol. 15. № 2. P. 73 – 88. DOI: https://doi.org/10.22055/rals.2024.46120.3235
- Schmidt T., Strasser T. Artificial Intelligence in Foreign Language Learning and Teaching: A CALL for Intelligent Practice // Anglistik. 2022. Vol. 33. № 1. P. 165 – 184. DOI: https://doi.org/10.33675/ANGL/2022/1/14
- Settles B., LaFlair G.T., Hagiwara M. Machine L arning-Driven Language Assessment // Transactions of the Association for Computational Linguistics. 2020. Vol. 8. P. 247-263. DOI: https://doi.org/10.1162/tacl_a_00310
Supplementary files
