Estimation of parameters of autoregressive models with fractional differences in the presence of additive noise

Cover Page

Cite item

Full Text

Abstract

For modeling in time series, models with fractional differences are widely used. The best known model is the ARFIMA (autoregressive fractionally integrated moving average) model. It is known that for integer-order autoregressive models, autoregressive models with additive noise can outperform ARMA and autoregressive models in terms of accuracy. This article considers a class of autoregressive models with fractional order differences. The article presents a new method for estimating parameters autoregressive models with fractional differences in the presence of additive noise with an unknown variance of additive noise. The propose algorithm was realized in Matlab. The simulation results show the high efficiency of the propose algorithm.

Full Text

Introduction

To describe processes of various nature, equations with derivatives are increasingly used. and differences of fractional order. Despite the lack of a simple interpretation, which give derivatives, integrals and differences of integers, models described by fractional-order equations, make it possible to accurately simulate many processes in physics and technology [1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 4]. In connection with the active development and application of equations with differences and fractional derivatives for modeling and forecasting problems, methods for estimating systems have also begun to actively develop, describing fractional-order equations and differences.

Autoregressions with fractional differences are widely used in the analysis of time series with long memory [5; 6]. There are a large number of different models with generalizations of fractional differences, such as Gegenbauer autoregressive moving average (GARMA) [7; 8], fractional ARUMA [9], seasonal autoregressive fractionally integrated moving average (SARFIMA) [10; 11], and autoregressive tempered fractionally integrated moving average (ARTFIMA) [12; 13]. Various aspects of using fractional differences for time series analysis have been considered [14; 15].

It is known that for autoregressive models of an integer order, autoregressive models with additive noise can exceed the accuracy of ARMA models and autoregressive models [16]. An overview of methods for estimating integer-order autoregressions in the presence of noise is presented in [17]. In the articles [8; 18; 19], the author considered the estimation of autoregressions with fractional-order differences in the presence of noise with a known noise ratio.

The article presents a new method for estimating parameters autoregressive models with fractional differences in the presence of additive noise with an unknown variance of additive noise.

1 Basic results

 Time series, is described by linear stochastic equations with fractional order differences:

                                                      z i = m=1 r b (m) Δ α m z i1 + ζ i , y i = z i + ξ i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGPbaabeaakiaai2dadaaeWbqabSqaaiaad2gacaaI9aGa aGymaaqaaiaadkhaa0GaeyyeIuoakiaadkgadaahaaWcbeqaaiaaiI cacaWGTbGaaGykaaaakiabfs5aenaaCaaaleqabaGaeqySde2aaSba aeaacaWGTbaabeaaaaGccaWG6bWaaSbaaSqaaiaadMgacqGHsislca aIXaaabeaakiabgUcaRiabeA7a6naaBaaaleaacaWGPbaabeaakiaa iYcacaaMe8UaamyEamaaBaaaleaacaWGPbaabeaakiaai2dacaWG6b WaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaeqOVdG3aaSbaaSqaaiaa dMgaaeqaaOGaaGilaaaa@5BC9@                                                             (1)

 where b (m) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaCa aaleqabaGaaGikaiaad2gacaaIPaaaaaaa@3B72@  are constant coefficients; 0< α 1 < α r ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHXoqydaWgaaWcbaGaaGymaaqabaGccqWIMaYscaaI8aGaeqyS de2aaSbaaSqaaiaadkhaaeqaaOGaaG4oaiaaysW7aaa@431D@   Γ(α)= 0 e t t α1 dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaaG ikaiabeg7aHjaaiMcacaaI9aWaa8qCaeqaleaacaaIWaaabaGaeyOh IukaniabgUIiYdGccaWGLbWaaWbaaSqabeaacqGHsislcaWG0baaaO GaamiDamaaCaaaleqabaGaeqySdeMaeyOeI0IaaGymaaaakiaadsga caWG0baaaa@4B39@  ;

Δ α m z i = j=0 i (1) j α m j z ij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaW baaSqabeaacqaHXoqydaWgaaqaaiaad2gaaeqaaaaakiaadQhadaWg aaWcbaGaamyAaaqabaGccaaI9aWaaabCaeqaleaacaWGQbGaaGypai aaicdaaeaacaWGPbaaniabggHiLdGccaaIOaGaeyOeI0IaaGymaiaa iMcadaahaaWcbeqaaiaadQgaaaGcdaqadaqaauaabeqaceaaaeaacq aHXoqydaWgaaWcbaGaamyBaaqabaaakeaacaWGQbaaaaGaayjkaiaa wMcaaiaadQhadaWgaaWcbaGaamyAaiabgkHiTiaadQgaaeqaaaaa@525F@  is fractional difference;

α m j = Γ( α m +1) Γ(j+1)Γ( α m j+1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaeqySde2aaSbaaSqaaiaad2gaaeqaaaGcbaGaamOA aaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacqqHtoWrcaaIOaGaeq ySde2aaSbaaSqaaiaad2gaaeqaaOGaey4kaSIaaGymaiaaiMcaaeaa cqqHtoWrcaaIOaGaamOAaiabgUcaRiaaigdacaaIPaGaeu4KdCKaaG ikaiabeg7aHnaaBaaaleaacaWGTbaabeaakiabgkHiTiaadQgacqGH RaWkcaaIXaGaaGykaaaaaaa@53C1@  is generalized binomial coefficients.

It is required to estimate the unknown coefficients of the dynamic system described by (1) from the observed sequence y i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG5bWaaSbaaSqaaiaadMgaaeqaaaGccaGL7bGaayzFaaaaaa@3C5A@  with noise for the known orders r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  , α m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaad2gaaeqaaaaa@3AC4@ .

If r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  and, α m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaad2gaaeqaaaaa@3AC4@  are unknown, it is necessary to apply algorithms based on global optimization, such as genetic algorithms [8].

The following assumptions are introduced:

A1. The dynamic system (1) is asymptotically stable.

A2. Noises { ξ i } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4Eaiabe6 7a4naaBaaaleaacaWGPbaabeaakiaai2haaaa@3CFA@  and { ζ i } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiabeA 7a6naaBaaaleaacaWGPbaabeaakiaai2haaaa@3CF4@  are statistically independent sequences with E{ ξ i }=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaaiU hacqaH+oaEdaWgaaWcbaGaamyAaaqabaGccaaI9bGaaGypaiaaicda caaISaaaaa@3FF9@   E{ ζ i }=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraiaaiU hacqaH2oGEdaWgaaWcbaGaamyAaaqabaGccaaI9bGaaGypaiaaicda caaISaaaaa@3FF3@   E ξ i 2 = σ ξ 2 <, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaace aabaWaaiGaaeaacqaH+oaEdaqhaaWcbaGaamyAaaqaaiaaikdaaaaa kiaaw2haaaGaay5EaaGaaGypaiabeo8aZnaaDaaaleaacqaH+oaEae aacaaIYaaaaOGaaGipaiabg6HiLkaaiYcaaaa@46D7@   E ζ i 2 = σ ζ 2 < MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyramaace aabaWaaiGaaeaacqaH2oGEdaqhaaWcbaGaamyAaaqaaiaaikdaaaaa kiaaw2haaaGaay5EaaGaaGypaiabeo8aZnaaDaaaleaacqaH2oGEae aacaaIYaaaaOGaaGipaiabg6HiLcaa@4615@  a.s., where E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraaaa@38CF@  is the expectation operator.

A3. The output sequence z i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG6bWaaSbaaSqaaiaadMgaaeqaaaGccaGL7bGaayzFaaGaaGilaaaa @3D11@  is independent of noise sequence ξ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacq aH+oaEdaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baaaaa@3D1F@ . The noise sequences ξ i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacq aH+oaEdaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baacaaISaaa aa@3DD5@   ζ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacq aH2oGEdaWgaaWcbaGaamyAaaqabaaakiaawUhacaGL9baaaaa@3D19@  are mutually independent.

In [18], the following objective function was proposed for estimating the parameters:

                                                            min b YCb 2 2 1+γ+ b T H ξ b , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacaWGIbaabeGcbaGaciyBaiaacMgacaGGUbaaamaalaaabaWaauWa aeaacaWGzbGaeyOeI0Iaam4qaiaadkgaaiaawMa7caGLkWoadaqhaa WcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIXaGaey4kaSIaeq4SdCMa ey4kaSIaamOyamaaCaaaleqabaGaamivaaaakiaadIeadaWgaaWcba GaeqOVdGhabeaakiaadkgaaaGaaGilaaaa@4F24@                                                                   (2)

 where

Hξ(mk)=limi1Ni=0N1αmjαkjNjN,m=1,r¯,k=1,r¯, 

C= φ 1 T φ N T r×N ,Y= y 1 y N N ,b= b (1) b (r) T r , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaai2 dadaqadaqaaiabeA8aQnaaDaaaleaacaaIXaaabaGaamivaaaakiab lAciljabeA8aQnaaDaaaleaacaWGobaabaGaamivaaaaaOGaayjkai aawMcaaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xhHi1aaWbaaSqabeaacaWGYbGaey41aqRaamOtaaaaki aaiYcacaWGzbGaaGypamaabmaabaGaamyEamaaBaaaleaacaaIXaaa beaakiablAciljaadMhadaWgaaWcbaGaamOtaaqabaaakiaawIcaca GLPaaacqGHiiIZcqWFDeIudaahaaWcbeqaaiaad6eaaaGccaaISaGa amOyaiaai2dadaqadaqaaiaadkgadaahaaWcbeqaaiaaiIcacaaIXa GaaGykaaaakiablAciljaadkgadaahaaWcbeqaaiaaiIcacaWGYbGa aGykaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaakiabgI Giolab=1risnaaCaaaleqabaGaamOCaaaakiaaiYcaaaa@71B0@  

φ i = Δ α 1 y i1 ,..., Δ α r y i1 1×r ,γ= σ ζ 2 / σ ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadMgaaeqaaOGaaGypamaabmaabaGaeuiLdq0aaWbaaSqa beaacqaHXoqydaWgaaqaaiaaigdaaeqaaaaakiaadMhadaWgaaWcba GaamyAaiabgkHiTiaaigdaaeqaaOGaaGilaiaai6cacaaIUaGaaGOl aiaaiYcacqqHuoardaahaaWcbeqaaiabeg7aHnaaBaaabaGaamOCaa qabaaaaOGaamyEamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaaa kiaawIcacaGLPaaacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaaGymaiabgEna0kaa dkhaaaGccaaISaGaeq4SdCMaaGypaiabeo8aZnaaDaaaleaacqaH2o GEaeaacaaIYaaaaOGaaG4laiabeo8aZnaaDaaaleaacqaH+oaEaeaa caaIYaaaaaaa@6DC7@

 Theorem 2.1. [18] Let the dynamic system described by Equation (1)with initial zero conditions and assumptions A1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ A3 be introduced. Then, the estimate of the coefficients determined by expression (2) exists, is unique, and converges to the true value of the coefficients with probability 1, i.e.:

                                                                b ^ (N) N a.s. b 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOyayaaja GaaGikaiaad6eacaaIPaWaaybyaeqaleqabaGaamyyaiaai6cacaWG ZbGaaGOlaaGcbaWaaybuaeqaleaacaqGobGaeyOKH4QaeyOhIukabe GcbaGaeyOKH4kaaaaacaWGIbWaaSbaaSqaaiaaicdaaeqaaaaa@4785@                                                                       (3)

.

 Proof. The proof of the theorem is similar to the proof given in [20].

The minimum of function (2) can be found as a solution to the biased normal system of equations

                                                          C T C σ ^ ξ 2 H ξ b ^ = C T Y. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGdbWaaWbaaSqabeaacaWGubaaaOGaam4qaiabgkHiTiqbeo8aZzaa jaWaa0baaSqaaiabe67a4bqaaiaaikdaaaGccaWGibWaaSbaaSqaai abe67a4bqabaaakiaawIcacaGLPaaaceWGIbGbaKaacaaI9aGaam4q amaaCaaaleqabaGaamivaaaakiaadMfacaaIUaaaaa@4998@                                                                 (4)

 If the noise variance is unknown σ ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4bqaaiaaikdaaaaaaa@3C76@ , then it is necessary to use the estimate of the additive noise variance σ ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4bqaaiaaikdaaaaaaa@3C76@ . The variance estimate σ ^ ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaeqOVdGhabaGaaGOmaaaaaaa@3C86@  can be found as the minimal generalized singular value

                                                             σ ^ ξ = σ min C ¯ , L ξ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaWgaaWcbaGaeqOVdGhabeaakiaai2dacqaHdpWCdaWgaaWcbaGa ciyBaiaacMgacaGGUbaabeaakmaabmaabaGabm4qayaaraGaaGilai aadYeadaWgaaWcbaGaeqOVdGhabeaaaOGaayjkaiaawMcaaiaaiYca aaa@4804@                                                                    (5)

 where σ min C ¯ , L ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiGac2gacaGGPbGaaiOBaaqabaGcdaqadaqaaiqadoeagaqe aiaaiYcacaWGmbWaaSbaaSqaaiabe67a4bqabaaakiaawIcacaGLPa aaaaa@42BB@  is the minimal generalized singular number of matrices C ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaara aaaa@38E7@  and L ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacqaH+oaEaeqaaaaa@3AC7@ ,

C ¯ = Y C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaara GaaGypamaabmaabaGaamywaGqaaiaa=bcacaWFGaGaa8hiaiaa=nea aiaawIcacaGLPaaaaaa@3EC5@ .

H ¯ ξ = L ¯ ξ T L ¯ ξ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaara WaaSbaaSqaaiabe67a4bqabaGccaaI9aGabmitayaaraWaa0baaSqa aiabe67a4bqaaiaadsfaaaGcceWGmbGbaebadaWgaaWcbaGaeqOVdG habeaakiaaiYcaaaa@4300@   H ¯ ξ = 1+γ 0 0 H ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaara WaaSbaaSqaaiabe67a4bqabaGccaaI9aWaaeWaaeaafaqabeGacaaa baGaaGymaiabgUcaRiabeo7aNbqaaiaaicdaaeaacaaIWaaabaGaam isamaaBaaaleaacqaH+oaEaeqaaaaaaOGaayjkaiaawMcaaaaa@44C3@ .

In [17] a review of methods for parametr estimation integer-order autoregressions with additive noise is presented. One of the most accurate was the approach proposed in the article [21]. This article uses a generalization of this approach to the case of autoregressions with fractional order differences. The maximum value of the variance σ ξmax 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4jGac2gacaGGHbGaaiiEaaqaaiaaikdaaaaaaa@3F4A@  is if the variance σ ζ 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabeA7a6bqaaiaaikdaaaGccaaI9aGaaGimaaaa@3DFB@  is defined as

                                                           σ ξmax 2 = σ min 2 C ¯ , L max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4jGac2gacaGGHbGaaiiEaaqaaiaaikdaaaGccaaI 9aGaeq4Wdm3aa0baaSqaaiGac2gacaGGPbGaaiOBaaqaaiaaikdaaa GcdaqadaqaaiqadoeagaqeaiaaiYcacaWGmbWaaSbaaSqaaiaad2ga caWGHbGaamiEaaqabaaakiaawIcacaGLPaaaaaa@4C9E@

where σ min C ¯ , L max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiGac2gacaGGPbGaaiOBaaqabaGcdaqadaqaaiqadoeagaqe aiaaiYcacaWGmbWaaSbaaSqaaiaad2gacaWGHbGaamiEaaqabaaaki aawIcacaGLPaaaaaa@43CD@  is minimal generalised singular values of matrices C ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaara aaaa@38E7@  and L max , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaOGaaGilaaaa@3C99@

H ¯ max = L ¯ max T L ¯ max , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaara WaaSbaaSqaaiaad2gacaWGHbGaamiEaaqabaGccaaI9aGabmitayaa raWaa0baaSqaaiaad2gacaWGHbGaamiEaaqaaiaadsfaaaGcceWGmb GbaebadaWgaaWcbaGaamyBaiaadggacaWG4baabeaakiaaiYcaaaa@4636@   H ¯ max = 1 0 0 H ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaara WaaSbaaSqaaiaad2gacaWGHbGaamiEaaqabaGccaaI9aWaaeWaaeaa faqabeGacaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaamisam aaBaaaleaacqaH+oaEaeqaaaaaaOGaayjkaiaawMcaaaaa@434C@ .

The true value of the variance belongs to the interval σ ξ 2 0 σ ξmax 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4bqaaiaaikdaaaGccqGHiiIZdaqadaqaaiaaicda ieaacaWFGaGaa8hiaiaa=bcacaWFGaGaeq4Wdm3aa0baaSqaaiabe6 7a4jGac2gacaGGHbGaaiiEaaqaaiaaikdaaaaakiaawIcacaGLPaaa aaa@4A21@ .

In [21], high-order Yule-Walker equations are used to determine the variance. However, this approach cannot be applied directly, since it is impossible to obtain a vector of instrumental shifts for equation (1).

Minimization (2) can be written as an eigenvector problem:

                                                            C¯TC¯σ^ξ2H¯ξb¯^=0,                                                                 (6)

 where b¯=1b.

Equation (6) requires knowing not only the variance of the additive noise σ ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4bqaaiaaikdaaaaaaa@3C76@ , but also the variance σ ζ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabeA7a6bqaaiaaikdaaaaaaa@3C70@ . In order to eliminate the need to evaluate σ ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4bqaaiaaikdaaaaaaa@3C76@  and σ ε 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabew7aLbqaaiaaikdaaaaaaa@3C5A@  simultaneously for fractional order autoregressions, we use generalized instrumental variables [22], the application of generalized instrumental variables for fractional order systems is considered in the article [23].

The vector of instrumental variables ψ i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaaaa@3AEF@  satisfies the equality

                                                          limNCψTC¯σξ2H¯ψb¯=0,                                                               (7)

 where

C ψ = ψ 1 T ψ N T r×N , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacqaHipqEaeqaaOGaaGypamaabmaabaGaeqiYdK3aa0baaSqa aiaaigdaaeaacaWGubaaaOGaeSOjGSKaeqiYdK3aa0baaSqaaiaad6 eaaeaacaWGubaaaaGccaGLOaGaayzkaaGaeyicI48efv3ySLgznfgD Ojdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaaWcbeqaai aadkhacqGHxdaTcaWGobaaaOGaaGilaaaa@5699@

ψ i = Δ α 1 y i2 ,..., Δ α r y i2 1×r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadMgaaeqaaOGaaGypamaabmaabaGaeuiLdq0aaWbaaSqa beaacqaHXoqydaWgaaqaaiaaigdaaeqaaaaakiaadMhadaWgaaWcba GaamyAaiabgkHiTiaaikdaaeqaaOGaaGilaiaai6cacaaIUaGaaGOl aiaaiYcacqqHuoardaahaaWcbeqaaiabeg7aHnaaBaaabaGaamOCaa qabaaaaOGaamyEamaaBaaaleaacaWGPbGaeyOeI0IaaGOmaaqabaaa kiaawIcacaGLPaaacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0 uy0HgiuD3BaGqbaiab=1risnaaCaaaleqabaGaaGymaiabgEna0kaa dkhaaaaaaa@6111@ , H ¯ ψ = 0 H ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaara WaaSbaaSqaaiabeI8a5bqabaGccaaI9aWaaeWaaeaafaqabeqacaaa baGaaGimaaqaaiaadIeadaWgaaWcbaGaeqiYdKhabeaaaaaakiaawI cacaGLPaaaaaa@40D8@ ,

Hψ(mk)=limi1Ni=0N1αmj1αkjNjN,m=1,r¯,k=1,r¯,

For a finite sample, equality (7) will not be strict, the problem of determining the variance estimate σ ^ ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaeqOVdGhabaGaaGOmaaaaaaa@3C86@  can be described as a quadratic function minimization problem

                                                             min σ ξ 0, σ ξmax J σ ξ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaybuaeqale aacqaHdpWCdaWgaaqaaiabe67a4bqabaGaeyicI48aaeWaaeaacaaI WaGaaGilaiabeo8aZnaaBaaabaGaeqOVdGNaciyBaiaacggacaGG4b aabeaaaiaawIcacaGLPaaaaeqakeaaciGGTbGaaiyAaiaac6gaaaGa aGjcVlaadQeadaqadaqaaiabeo8aZnaaBaaaleaacqaH+oaEaeqaaa GccaGLOaGaayzkaaGaaGilaaaa@5257@                                                                    (8)

 where

Jσξ=b¯TCψTC¯σξ2H¯ψTCψTC¯σξ2H¯ψb¯.

Based on equations (4), (6) and (8), an iterative algorithm is proposed for estimating the parameters b ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOyayaaja aaaa@38FE@  and the variance σ ^ ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaK aadaqhaaWcbaGaeqOVdGhabaGaaGOmaaaaaaa@3C86@  .

 Step 1. Determine the maximum value of the variance σ ξmax 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4jGac2gacaGGHbGaaiiEaaqaaiaaikdaaaaaaa@3F4A@  is defined as

                                                           σ ξmax 2 = σ min 2 C ¯ , L max . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4jGac2gacaGGHbGaaiiEaaqaaiaaikdaaaGccaaI 9aGaeq4Wdm3aa0baaSqaaiGac2gacaGGPbGaaiOBaaqaaiaaikdaaa GcdaqadaqaaiqadoeagaqeaiaaiYcacaWGmbWaaSbaaSqaaiaad2ga caWGHbGaamiEaaqabaaakiaawIcacaGLPaaacaaIUaaaaa@4D56@

 Step 2. Start from a generic value σ ξ 2 0 σ ξmax 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4bqaaiaaikdaaaGccqGHiiIZdaqadaqaaiaaicda ieaacaWFGaGaa8hiaiaa=bcacaWFGaGaa8hiaiabeo8aZnaaDaaale aacqaH+oaEciGGTbGaaiyyaiaacIhaaeaacaaIYaaaaaGccaGLOaGa ayzkaaGaaiOlaaaa@4B74@

 Step 3. Compute the parameter vector from equation (4)

                                                          C T C σ ^ ξ 2 H ξ b ^ = C T Y, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGdbWaaWbaaSqabeaacaWGubaaaOGaam4qaiabgkHiTiqbeo8aZzaa jaWaa0baaSqaaiabe67a4bqaaiaaikdaaaGccaWGibWaaSbaaSqaai abe67a4bqabaaakiaawIcacaGLPaaaceWGIbGbaKaacaaI9aGaam4q amaaCaaaleqabaGaamivaaaakiaadMfacaaISaaaaa@4996@

 Step 4. Compute the cost function (8)

Jσξ=b¯^TCψTC¯σξ2H¯ψTCψTC¯σξ2H¯ψb¯^.

 Step 5. Choose a new value σ ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiabe67a4bqaaiaaikdaaaaaaa@3C76@  . The choice can be made using one of the methods of one-dimensional optimization.

 Step 6. Repeat steps 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 5 until the value associated with the minimum of is found.

2 Simulation results

 The proposed algorithm has been compared with ordinary least squares and the algorithm based on objective function (2) with a known noise variance ratio. The minimum (2) of the objective function can be found from the solution of the equation (4) or the augmented system of equations [24].

Test cases were compared by the following characteristics:the normalized root mean square error (NRMSE) of parameter estimation, defined as

δb=b^b02/b02100%,

and normalized root mean square error of modelling (NRMSEM), defined as

δz=z^z2/z2100%  .

The results were based on 50 independent Monte-Carlo simulations.

 Example 1. The AR model is described by the equation

                                                      z i =0.45 Δ 0.1 z i1 + ζ i , y i = z i + ξ i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIWaGaaGOlaiaaisdacaaI1aGa euiLdq0aaWbaaSqabeaacqGHsislcaaIWaGaaGOlaiaaigdaaaGcca WG6bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiabgUcaRiab eA7a6naaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaamyEamaaBa aaleaacaWGPbaabeaakiaai2dacaWG6bWaaSbaaSqaaiaadMgaaeqa aOGaey4kaSIaeqOVdG3aaSbaaSqaaiaadMgaaeqaaOGaaGilaaaa@55F3@                                                             (1)

 Noise standard deviation ratio

                                                           σ ξ / σ z =0.5,γ=2.605 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiabe67a4bqabaGccaaIVaGaeq4Wdm3aaSbaaSqaaiaadQha aeqaaOGaaGypaiaaicdacaaIUaGaaGynaiaaiYcacqaHZoWzcaaI9a GaaGOmaiaai6cacaaI2aGaaGimaiaaiwdaaaa@493D@

The number of data points N in each simulation was 10000.

Table 2.1 shows the mean values of tNRMSE and NRMSEM and their standard deviations.

 

Table 2.1

Mean values of NRMSE and NRMSEM and their standard deviations

Таблица 2.1

Средние значения NRMSE и NRMSEM и их стандартные отклонения 

 

 Ordinary least squares, %

 Algorithm with known ratio, %

 Proposed algorithm with unknown ratio, %

  δb MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaam Oyaaaa@3A93@  

  8.95±5.74 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGioaiaai6 cacaaI5aGaaGynaiabgglaXkaaiwdacaaIUaGaaG4naiaaisdaaaa@3FE7@  

  1.05±1.20 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 cacaaIWaGaaGynaiabgglaXkaaigdacaaIUaGaaGOmaiaaicdaaaa@3FCA@  

  1.44±1.93 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 cacaaI0aGaaGinaiabgglaXkaaigdacaaIUaGaaGyoaiaaiodaaaa@3FD7@  

  δz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaam OEaaaa@3AAB@  

  43.50±15.42 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaaio dacaaIUaGaaGynaiaaicdacqGHXcqScaaIXaGaaGynaiaai6cacaaI 0aGaaGOmaaaa@414D@  

  12.88±9.88 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaik dacaaIUaGaaGioaiaaiIdacqGHXcqScaaI5aGaaGOlaiaaiIdacaaI 4aaaaa@40A7@  

  13.55±10.98 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaio dacaaIUaGaaGynaiaaiwdacqGHXcqScaaIXaGaaGimaiaai6cacaaI 5aGaaGioaaaa@4155@  

 

Example 2. The AR model is described by the equation

                                                       z i =0.5 Δ 0.7 z i1 + ζ i , y i = z i + ξ i , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGPbaabeaakiaai2dacaaIWaGaaGOlaiaaiwdacqqHuoar daahaaWcbeqaaiaaicdacaaIUaGaaG4naaaakiaadQhadaWgaaWcba GaamyAaiabgkHiTiaaigdaaeqaaOGaey4kaSIaeqOTdO3aaSbaaSqa aiaadMgaaeqaaOGaaGilaiaaysW7caWG5bWaaSbaaSqaaiaadMgaae qaaOGaaGypaiaadQhadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaH +oaEdaWgaaWcbaGaamyAaaqabaGccaaISaaaaa@544E@                                                              (2)

 Noise standard deviation ratio

                                                           σ ξ / σ z =0.5,γ=2.11 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiabe67a4bqabaGccaaIVaGaeq4Wdm3aaSbaaSqaaiaadQha aeqaaOGaaGypaiaaicdacaaIUaGaaGynaiaaiYcacqaHZoWzcaaI9a GaaGOmaiaai6cacaaIXaGaaGymaaaa@487A@

The number of data points N in each simulation was 2000.

Table 2.2 shows the mean values of tNRMSE and NRMSEM and their standard deviations.

 

Table 2.2

 Mean values of NRMSE and NRMSEM and their standard deviation

Таблица 2.2 

 Средние значения NRMSE и NRMSEM и их стандартное отклонение 

 

 Ordinary least squares, %

 Algorithm with known ratio, %

 Proposed algorithm with unknown ratio, %

  δb MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaam Oyaaaa@3A93@  

  15.73±2.62 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiw dacaaIUaGaaG4naiaaiodacqGHXcqScaaIYaGaaGOlaiaaiAdacaaI Yaaaaa@4095@  

  2.16±1.46 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaai6 cacaaIXaGaaGOnaiabgglaXkaaigdacaaIUaGaaGinaiaaiAdaaaa@3FD5@  

  3.00±2.74 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaai6 cacaaIWaGaaGimaiabgglaXkaaikdacaaIUaGaaG4naiaaisdaaaa@3FD1@  

  δz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaam OEaaaa@3AAB@  

  26.70±2.36 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiA dacaaIUaGaaG4naiaaicdacqGHXcqScaaIYaGaaGOlaiaaiodacaaI 2aaaaa@4095@  

  5.82±4.47 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaai6 cacaaI4aGaaGOmaiabgglaXkaaisdacaaIUaGaaGinaiaaiEdaaaa@3FDF@  

7.13±5.39 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4naiaai6 cacaaIXaGaaG4maiabgglaXkaaiwdacaaIUaGaaG4maiaaiMdaaaa@3FDD@  

 

Conclusion

This paper proposed an estimation method of the parameters of fractional AR models with additive noise. The simulation results showed that the parameter estimates obtained using the proposed algorithm are highly accurate.

Further development of the proposed approach is the study of the best choice of instrumental variables and the choice of the weighting matrix.

×

About the authors

Dmitriy V. Ivanov

Samara National Research University; Samara State University of Transport

Author for correspondence.
Email: dvi85@list.ru
ORCID iD: 0000-0002-5021-5259

associate professor, Candidate of Physical and Mathematical Sciences, Department of Information Security, associate professor, Department of Information Technologies

Russian Federation, Samara; Samara

References

  1. Stiassnie M. On the application of fractional calculus for the formulation of viscoelastic models // Applied Mathematical Modelling. 1979. Vol. 3. Issue 4. Pp. 300–302. DOI: https://doi.org/10.1016/S0307-904X(79)80063-3.
  2. Bagley R.L. Fractional calculus – a different approach to the analysis of viscoelastically damped structures // AIAA Journal. 1983. Vol. 21. Number 5. Pp. 741–748. DOI: https://doi.org/10.2514/3.8142.
  3. Reyes-Melo M.E., Martinez-Vega J.J., Guerrero-Salazar C.A., Ortiz-Mendez U. Application of fractional calculus to modeling of relaxation phenomena of organic dielectric materials // Proceedings International Conference Solid Dielectrics (ICSD’04). Toulouse, 2004. Vol. 2. P. 530–533. DOI: http://doi.org/10.1109/ICSD.2004.1350485.
  4. Vinagre B.M., Feliu V. Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures // Proceedings of 41-st IEEE Conference Decision Control. Las Vegas, 2002. Pp. 214–239. Available at: https://www.researchgate.net/profile/Vicente-Feliu-2/publication/252440774_Modeling_and_control_of_dynamic_system_using_fractional_calculus_Application_to_electrochemical_processes_and_flexible_structures/links/54aa71290cf2eecc56e6f22e/Modeling-and-control-of-dynamic-system-using-fractional-calculus-Application-toelectrochemical-processes-and-flexible-structures.pdf.
  5. Granger C.W., Joyeux R. An introduction to long-memory time series models and fractional differencing // Journal of Time Series Analysis. 1980. Vol. 1, No. 1. Pp. 15–29. DOI: http://doi.org/10.1111/j.1467-9892.1980.tb00297.x.
  6. Hosking J.R.M. Fractional differencing // Biometrika. 1981. Vol. 68, No. 1. Pp. 165–176. DOI: http://doi.org/10.1093/biomet/68.1.165.
  7. Woodward W.A., Cheng Q.; Gray H.L. A k-factor GARMA long-memory model // Journal of Time Series Analysis. 1998. Vol. 19, Issue 4. Pp. 485–504. DOI: https://doi.org/10.1111/j.1467-9892.1998.00105.x.
  8. Ivanov D.V., Engelgardt V.V., Sandler I.L. Genetic Algorithm of Structural and Parametric Identification of Gegenbauer Autoregressive with Noise on Output // Procedia Computer Science. 2018. Vol. 131. Pp. 619–625. DOI: http://dx.doi.org/10.1016/j.procs.2018.04.304.
  9. Giraitis L., Leipus R. A generalized fractionally differencing approach in long memory modelling // Lithuanian Mathematical Journal. 1995. Vol. 35. Pp. 53–65. DOI: https://doi.org/10.1007/BF02337754.
  10. Reisen V.A., Rodrigues A.L., Palma W. Estimation of Seasonal Fractionally Integrated Processes // Computational Statistics & Data Analysis. 2006. Vol. 50, Issue 2. Pp. 568–582. DOI: https://doi.org/10.1016/j.csda.2004.08.004.
  11. Reisen V.A., Rodrigues A.L., Palma W. Estimating seasonal long-memory processes: A Monte Carlo study // Journal of Statistical Computation and Simulation. 2006. Vol. 76, Issue 4. Pp. 305–316. DOI: http://dx.doi.org/10.1080/10629360500107790.
  12. Meerschaert M.M., Sabzikar F., Phanikumar M.S., Zeleke A. Tempered fractional time series model for turbulence in geophysical flows // Journal of Statistical Mechanics Theory and Experiment. 2014. P09023. DOI: http://doi.org/10.1088/1742-5468/2014/09/P09023.
  13. Sabzikar F., Meerschaert M.M., Chen J. Tempered Fractional Calculus // Journal of Computational Physics. 2015. Vol. 293. Pp. 14–28. DOI: https://doi.org/10.1016/j.jcp.2014.04.024.
  14. Ram M. Recent Advances in Time Series Forecasting, 1st ed.; Bisht D.C.S. (Ed.) Boca Raton, FL, USA: CRC Press, 2021. 238 p. DOI: https://doi.org/10.1201/9781003102281.
  15. Palma W. Long-memory time series: Theory and Methods. Hoboken, NJ, USA: Wiley, 2006. 304 p. Available at: https://books.google.ru/books?id=NtSbmQyQcSMC&printsec=frontcover&hl=ru#v=onepage&q&f=false.
  16. Guidorzi R., Diversi R., Vincenzi L., Simioli V. AR+ noise versus AR and ARMA models in SHM-oriented identification // Proceedings of the 23rd Mediterranean Conference on Control and Automation (MED), Torremolinos, Spain, 16–19 June 2015. Pp. 809–814. DOI: https://doi.org/10.1109/med.2015.7158845.
  17. Ivanov D., Yakoub Z. Overview of Identification Methods of Autoregressive Model in Presence of Additive Noise // Mathematics 2023. Vol. 11, Issue 3. P. 607. DOI: https://doi.org/10.3390/math11030607.
  18. Ivanov D.V. Identification autoregression non-integer order with noise in output signal. In: Interdisciplinary research in the area of mathematical modelling and informatics: Materials of the research and practical internet-conference. June 18-19, 2019. Togliatti, June 18-19, 2013. Togliatti: SIMJET, 2013, pp. 64–67. Available at: https://www.elibrary.ru/item.asp?id=20742187. EDN: https://www.elibrary.ru/rlxlcf. (In Russ.)
  19. Ivanov D.V., Serebryakov A.Yu., Ivanov A.V. Identification of autoregression described by fractional difference equations with 1/f noise in the output signal. Vestnik transporta Povolzhya, 2016, no. 5 (59), pp. 93–99. Available at: https://www.elibrary.ru/item.asp?id=27468166. EDN: https://www.elibrary.ru/xdcfvf. (In Russ.)
  20. Ivanov D.V. Estimation of parameters of linear fractional order ARX systems with noise in the input signal // Tomsk State University Journal of Control and Computer Science. 2014. No. 2(27), pp. 30–38. Available at: https://www.elibrary.ru/item.asp?id=21649106. EDN: https://www.elibrary.ru/sftlbf. (In Russ.)
  21. Diversi R., Guidorzi R., Soverini U. Identification of autoregressive models in the presence of additive noise // International Journal of Adaptive Control and Signal Processing. 2007. Vol. 22. P. 465–481. DOI: http://doi.org/10.1002/acs.989.
  22. Soderstrom T. A generalized instrumental variable estimation method for errors-in-variables identification problems // Automatica. 2011. Vol. 47, Issue 8, Pp. 1656–1666. DOI: https://doi.org/10.1016/j.automatica.2011.05.010.
  23. Ivanov D.V., Sandler I.L., Kozlov E.V. Identification of Fractional Linear Dynamical Systems with Autocorrelated Errors in Variables by Generalized Instrumental Variables // IFAC-PapersOnLine, 2018, Vol. 51, Issue 32. Pp. 580–584. DOI: http://dx.doi.org/10.1016/j.ifacol.2018.11.485.
  24. Ivanov D., Zhdanov A. Symmetrical Augmented System of Equations for the Parameter Identification of Discrete Fractional Systems by Generalized Total Least Squares // Mathematics. 2021. Vol. 9, Issue 24. Article number: 3250. DOI: https://doi.org/10.3390/math9243250.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Ivanov D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».