Comparison of nonparametric estimates of the survival functions

Cover Page

Cite item

Full Text

Abstract

The article compares three types of estimates: exponential, multiplying and power structures for the survival function of three random censoring observations on the right. It was previously established that all these three estimates are equivalent with a growing sample size, i.e. three with the same centering and normalization converge to the same Gaussian process. For specific samples, it is shown that power estimates are defined on the entire line, in contrast to exponential and multiply estimates. Therefore, power estimates are better than the other two. Censored data is used in survival analyses, biomedical trials, and industrial experiments. There are several censoring schemes (right, left, both sides, combined with competing risks, and others). However, right-sided random censoring is common in the statistical literature because it is easy to describe from a methodological point of view. Here we also consider this type of censoring, to compare our results with others.

Full Text

1 Предварительные сведения

Исследования непараметрических оценок, экспоненциальной, множительной и степенной структур показывают их асимптотическую эквивалентность (при n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgk ziUkabg6HiLcaa@3C58@  ). Некоторые отличительные свойства этих оценок проявляются при фиксированном объеме выборки, и они проведены в монографии [1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4waiaaig dacaaIDbaaaa@3A8E@ .

Пусть { Z j ,j1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadQ fadaWgaaWcbaGaamOAaaqabaGccaaISaGaaGjcVlaadQgacqGHLjYS caaIXaGaaGyFaaaa@41CE@  и { Y j ,j1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadM fadaWgaaWcbaGaamOAaaqabaGccaaISaGaamOAaiabgwMiZkaaigda caaI9baaaa@403C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  взаимонезависимые последовательности, независимые и одинаково распределенные случайная величина с непрерывными функциями распределения H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@38D4@  и G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@38D3@  соответственно. Наблюдается выборка объема n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@ :

                                                         C (n) ={( ξ j , Δ j ),1jn}, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGikaiaad6gacaaIPaaaaOGaaGypaiaaiUhacaaIOaGa eqOVdG3aaSbaaSqaaiaadQgaaeqaaOGaaGilaiabfs5aenaaBaaale aacaWGQbaabeaakiaaiMcacaaISaGaaGjcVlaaysW7caaMi8UaaGym aiabgsMiJkaadQgacqGHKjYOcaWGUbGaaGyFaiaaiYcaaaa@51E1@

где

                                                             ξ j =min Z j ; Y j , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadQgaaeqaaOGaaGypaiGac2gacaGGPbGaaiOBamaabmaa baGaamOwamaaBaaaleaacaWGQbaabeaakiaaiUdacaWGzbWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGilaaaa@4593@

                                                               Δ j = I( Z j Y j ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadQgaaeqaaOGaaGypaiaaiccacaWGjbGaaGikaiaadQfa daWgaaWcbaGaamOAaaqabaGccqGHKjYOcaWGzbWaaSbaaSqaaiaadQ gaaeqaaOGaaGykaaaa@43F2@

( I A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaabm aabaGaamyqaaGaayjkaiaawMcaaaaa@3B24@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это индикатор события A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaaaa@38CD@ .

1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaai6 caaaa@397A@  Если Z j Y j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGQbaabeaakiabgsMiJkaadMfadaWgaaWcbaGaamOAaaqa baaaaa@3DB9@ , то ξ j =min Z j ; Y j = Z j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadQgaaeqaaOGaaGypaiaab2gacaqGPbGaaeOBamaabmaa baGaamOwamaaBaaaleaacaWGQbaabeaakiaaiUdacaWGzbWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGypaiaadQfadaWgaaWc baGaamOAaaqabaaaaa@4799@ , Δ j =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadQgaaeqaaOGaaGypaiaaigdaaaa@3C14@ , и в этом случае мы можем наблюдать Z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaaaa@38E6@ ;

2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaai6 caaaa@397B@  Если Y j Z j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGQbaabeaakiabgsMiJkaadQfadaWgaaWcbaGaamOAaaqa baaaaa@3DB9@ , то ξ j =min Z j ; Y j = Y j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadQgaaeqaaOGaaGypaiaab2gacaqGPbGaaeOBamaabmaa baGaamOwamaaBaaaleaacaWGQbaabeaakiaaiUdacaWGzbWaaSbaaS qaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGypaiaadMfadaWgaaWc baGaamOAaaqabaaaaa@4798@ , Δ j =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadQgaaeqaaOGaaGypaiaaicdaaaa@3C13@ , это будет случай цензурирования.

Задача состоит в оценивании функции выживания 1H(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIeacaaIOaGaamiEaiaaiMcaaaa@3CDE@  по выборке C (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGikaiaad6gacaaIPaaaaaaa@3B54@  при мешающей функции распределения G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@38D3@ . Для 1H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIeaaaa@3A7C@  справедливо представление [2]:

                                                          1H(x)=exp(Λ(x;1)), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIeacaaIOaGaamiEaiaaiMcacaaI9aGaciyzaiaacIhacaGG WbGaaGikaiabgkHiTiabfU5amjaaiIcacaWG4bGaaG4oaiaaigdaca aIPaGaaGykaiaaiYcaaaa@48DF@

где

                                         Λ x;1 = ;x 1H u 1 dH u = ;x 1N u 1 dM u;1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aae WaaeaacaWG4bGaaG4oaiaaigdaaiaawIcacaGLPaaacaaI9aWaa8qu aeqaleaadaqcWaqaaiabgkHiTiabg6HiLkaaiUdacaWG4baacaGLOa GaayzxaaaabeqdcqGHRiI8aOWaaeWaaeaacaaIXaGaeyOeI0Iaamis amaabmaabaGaamyDaiabgkHiTaGaayjkaiaawMcaaaGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadsgacaWGibWaaeWa aeaacaWG1baacaGLOaGaayzkaaGaaGypamaapefabeWcbaWaaKamae aacqGHsislcqGHEisPcaaI7aGaamiEaaGaayjkaiaaw2faaaqab0Ga ey4kIipakmaabmaabaGaaGymaiabgkHiTiaad6eadaqadaqaaiaadw hacqGHsislaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqa aiabgkHiTiaaigdaaaGccaWGKbGaamytamaabmaabaGaamyDaiaaiU dacaaIXaaacaGLOaGaayzkaaGaaGilaaaa@6D2B@

                                          N x =P ξ j x =1 1H x 1G x =M x;1 +M x;0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaabm aabaGaamiEaaGaayjkaiaawMcaaiaai2dacaWGqbWaaeWaaeaacqaH +oaEdaWgaaWcbaGaamOAaaqabaGccqGHKjYOcaWG4baacaGLOaGaay zkaaGaaGypaiaaigdacqGHsisldaqadaqaaiaaigdacqGHsislcaWG ibWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaWaae WaaeaacaaIXaGaeyOeI0Iaam4ramaabmaabaGaamiEaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaiaai2dacaWGnbWaaeWaaeaacaWG4bGaaG 4oaiaaigdaaiaawIcacaGLPaaacqGHRaWkcaWGnbWaaeWaaeaacaWG 4bGaaG4oaiaaicdaaiaawIcacaGLPaaacaaISaaaaa@5FA3@

                                                       M x;1 =P ξ j x, Δ j =i ,i=0;1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaabm aabaGaamiEaiaaiUdacaaIXaaacaGLOaGaayzkaaGaaGypaiaadcfa daqadaqaaiabe67a4naaBaaaleaacaWGQbaabeaakiabgsMiJkaadI hacaaISaGaaGjcVlabfs5aenaaBaaaleaacaWGQbaabeaakiaai2da caWGPbaacaGLOaGaayzkaaGaaGilaiaayIW7caaMi8UaamyAaiaai2 dacaaIWaGaaG4oaiaaigdacaaIUaaaaa@54A4@

                                       H1nx=1uxexpMnu;1Mnu;11Nnu=1expΛnx;1,H2nx=1uxexp1Mnu;1Mnu;11Nnu,H3nx=11NnxRnx,(1)

где

                                                         R n (x)= Λ n (x;1)( Λ n (x )) 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaGykaiaayIW7caaMe8Ua aGjcVlaai2dacqqHBoatdaWgaaWcbaGaamOBaaqabaGccaaIOaGaam iEaiaaiUdacaaIXaGaaGykaiaaiIcacqqHBoatdaWgaaWcbaGaamOB aaqabaGccaaIOaGaamiEaiaaiMcacaaIPaWaaWbaaSqabeaacqGHsi slcaaIXaaaaOGaaGilaaaa@5159@

                                                    Λ n x;1 = ;x 1 N n u 1 d M n u;1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG4bGaaG4oaiaaigdaaiaa wIcacaGLPaaacaaI9aWaa8quaeqaleaadaqcWaqaaiabgkHiTiabg6 HiLkaaiUdacaWG4baacaGLOaGaayzxaaaabeqdcqGHRiI8aOWaaeWa aeaacaaIXaGaeyOeI0IaamOtamaaBaaaleaacaWGUbaabeaakmaabm aabaGaamyDaiabgkHiTaGaayjkaiaawMcaaaGaayjkaiaawMcaamaa CaaaleqabaGaeyOeI0IaaGymaaaakiaadsgacaWGnbWaaSbaaSqaai aad6gaaeqaaOWaaeWaaeaacaWG1bGaaG4oaiaaigdaaiaawIcacaGL PaaacaaISaaaaa@59F2@

                                                      Λ n x = ;x 1 N n u 1 d N n u , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4MdW0aaS baaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGa aGypamaapefabeWcbaWaaKamaeaacqGHsislcqGHEisPcaaI7aGaam iEaaGaayjkaiaaw2faaaqab0Gaey4kIipakmaabmaabaGaaGymaiab gkHiTiaad6eadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadwhacq GHsislaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGccaWGKbGaamOtamaaBaaaleaacaWGUbaabeaakm aabmaabaGaamyDaaGaayjkaiaawMcaaiaaiYcaaaa@56F3@

                                                  N n x = M n x;1 + M n x;0 = 1 n j=1 n I ξ j x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaaBa aaleaacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaa i2dacaWGnbWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG4bGaaG 4oaiaaigdaaiaawIcacaGLPaaacqGHRaWkcaWGnbWaaSbaaSqaaiaa d6gaaeqaaOWaaeWaaeaacaWG4bGaaG4oaiaaicdaaiaawIcacaGLPa aacaaI9aWaaSaaaeaacaaIXaaabaGaamOBaaaadaaeWbqabSqaaiaa dQgacaaI9aGaaGymaaqaaiaad6gaa0GaeyyeIuoakiaadMeadaqada qaaiabe67a4naaBaaaleaacaWGQbaabeaakiabgsMiJkaadIhaaiaa wIcacaGLPaaacaaISaaaaa@5B10@

                                                    M n x;i = 1 n j=1 n I ξ j x, Δ j =i ,i=0,1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGUbaabeaakmaabmaabaGaamiEaiaaiUdacaWGPbaacaGL OaGaayzkaaGaaGypamaalaaabaGaaGymaaqaaiaad6gaaaWaaabCae qaleaacaWGQbGaaGypaiaaigdaaeaacaWGUbaaniabggHiLdGccaWG jbWaaeWaaeaacqaH+oaEdaWgaaWcbaGaamOAaaqabaGccqGHKjYOca WG4bGaaGilaiabfs5aenaaBaaaleaacaWGQbaabeaakiaai2dacaWG PbaacaGLOaGaayzkaaGaaGilaiaayIW7caaMi8UaaGjcVlaadMgaca aI9aGaaGimaiaaiYcacaaIXaGaaGOlaaaa@5D59@

Таким образом, рассматриваемая модель является моделью случайного цензурирования справа Z j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGQbaabeaaaaa@3A01@  при помощи Y j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGQbaabeaaaaa@3A00@ , где Z j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGQbaabeaaaaa@3A01@  наблюдаемы лишь при Δ j =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdq0aaS baaSqaaiaadQgaaeqaaOGaaGypaiaayIW7caaMe8UaaGjcVlaaigda aaa@40C3@ .

Пусть G 1n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIXaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcaaaa@3D19@ , G 2n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcaaaa@3D1A@  и G 3n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIZaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcaaaa@3D1B@  соответствующие оценки мешающей функции распределения G(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacaWG4bGaaGykaaaa@3B35@ , определяемые формулами (1) с заменой M n (x;1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaG4oaiaaigdacaaIPaaa aa@3DE4@  на M n (x;0). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGUbaabeaakiaaiIcacaWG4bGaaG4oaiaaicdacaaIPaGa aGOlaaaa@3E9B@  В рассматриваемой модели 1N(x)=(1H(x))(1G(x)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaad6eacaaIOaGaamiEaiaaiMcacaaI9aGaaGikaiaaigdacqGH sislcaWGibGaaGikaiaadIhacaaIPaGaaGykaiaaiIcacaaIXaGaey OeI0Iaam4raiaaiIcacaWG4bGaaGykaiaaiMcaaaa@4A22@  для всех x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh Hifaaa@4540@ . Однако для этих трех типов оценок имеем:

 I.

                                               (1 H 1n (x))(1 G 1n (x))=exp( Λ n (x))1 N n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaWGibWaaSbaaSqaaiaaigdacaWGUbaabeaakiaaiIca caWG4bGaaGykaiaaiMcacaaIOaGaaGymaiabgkHiTiaadEeadaWgaa WcbaGaaGymaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiaa yIW7caaMe8UaaGjcVlaai2daciGGLbGaaiiEaiaacchacaaIOaGaey OeI0Iaeu4MdW0aaSbaaSqaaiaad6gaaeqaaOGaaGikaiaadIhacaaI PaGaaGykaiabgcMi5kaaigdacqGHsislcaWGobWaaSbaaSqaaiaad6 gaaeqaaOGaaGikaiaadIhacaaIPaGaaGiiaiaaiccaaaa@610A@

и при

                                                            xξ(n)= max1⩽i⩽nξi,

 

                                                          max H 1n (x); G 1n (x) <1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBaiaacg gacaGG4bWaaeWaaeaacaWGibWaaSbaaSqaaiaaigdacaWGUbaabeaa kiaaiIcacaWG4bGaaGykaiaaiUdacaWGhbWaaSbaaSqaaiaaigdaca WGUbaabeaakiaaiIcacaWG4bGaaGykaaGaayjkaiaawMcaaiaaiYda caaIXaGaaGOlaaaa@4987@

 II.

                                                     (1 H 2n (x))(1 G 2n (x))1 N n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaWGibWaaSbaaSqaaiaaikdacaWGUbaabeaakiaaiIca caWG4bGaaGykaiaaiMcacaaIOaGaaGymaiabgkHiTiaadEeadaWgaa WcbaGaaGOmaiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiab gcMi5kaaigdacqGHsislcaWGobWaaSbaaSqaaiaad6gaaeqaaOGaaG ikaiaadIhacaaIPaGaaGiiaiaaiccaaaa@5169@

и при

                                                                 x ξ (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgw MiZkabe67a4naaBaaaleaacaaIOaGaamOBaiaaiMcaaeqaaaaa@3F11@

оценки H 2n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaIGaaa aa@3DC5@  и G 2n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaIGaaa aa@3DC4@  неопределенны.

 III. Для степенных оценок

                                                      (1 H 3n (x))(1 G 3n (x))=1 N n (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaWGibWaaSbaaSqaaiaaiodacaWGUbaabeaakiaaiIca caWG4bGaaGykaiaaiMcacaaIOaGaaGymaiabgkHiTiaadEeadaWgaa WcbaGaaG4maiaad6gaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiaa i2dacaaIXaGaeyOeI0IaamOtamaaBaaaleaacaWGUbaabeaakiaaiI cacaWG4bGaaGykaiaaiccacaaIGaaaaa@506B@

и, следовательно, при x ξ (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgw MiZkabe67a4naaBaaaleaacaaIOaGaamOBaiaaiMcaaeqaaaaa@3F11@ , H 2n (x)= G 2n (x)=1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiMcacaaI9aGa am4ramaaBaaaleaacaaIYaGaamOBaaqabaGccaaIOaGaamiEaiaaiM cacaaI9aGaaGymaiaai6caaaa@452F@

Таким образом, для случая непрерывных распределений H и G, только оценки степенной структуры H 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaiodaaeqaaaaa@38F0@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aad6gaaeqaaaaa@3926@  и G 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aaiodaaeqaaaaa@38F0@   n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aad6gaaeqaaaaa@3926@  являются идентифицируемыми с моделью. Для демонстрации свойств оценок (1) рассмотрим выборку объема n=97 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaI5aGaaG4naaaa@3B45@  из работ [3; 5]. Это данные из центра уединения Ченнинг Хаус (Channing House) в г. Пало Альто (Palo Alto) в Калифорнии (США). Вариационный ряд, построенный по этим данным, есть:

(777;1), (781;0), (843;0), (866;0), (869;1), (872;1), (876;1), (893;1), (894;1), (895;0), (898;1), (906;0), (907;1), (909;1), (911;1), (911;0), (914;0), (927;1), (932;1), (936;0), (940;0), (942,5;0), (943;0), (945;1), (945;0), (948;1), (951;0), (953;0), (956;0), (957;1), (957;0), (959;0), (960;0), (966;1), (966;0), (969;1), (970;0), (971;1), (972;0), (973;0), (977;0), (983;1), (984;0), (985;1), (989;1), (992,5;1), (993;1), (996;1), (998;1), (1001;0), (1002;0), (1005;0), (1006;0), (1009;1), (1011,5;1), (1012;1), (1012;0), (1013;0), (1015;0), (1016;0), (1018;0), (1022;1), (1023;0), (1025;1), (1027;0), (1029;1), (1031;1), (1031;0), (1031,5;0), (1033;1), (1036;1), (1043;1), (1043;0), (1044;1), (1044;0), (1045;0), (1047;0), (1053;1), (1055;1), (1058;0), (1059;1), (1060;1), (1060;0), (1064;0), (1070;0), (1073;0), (1080;1), (1085;1), (1093;0), (1093,5;1), (1094;1), (1106;0), (1107;0), (1118;0), (1128;1), (1139;1), (1153;0).

Здесь данные представлены в месяцах, причем находящееся с рядом число 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaaaa@38C2@  в парах означает нецензурирование (т. е. смерть), а 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaaaa@38C1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  цензурирование. При этом 46 человек умерли с начала открытия центра в 1964 году по 1 июля 1975 года ко дню сбора данных. Это нецензурированные данные. Из остальных данных о 51 человеке 5 были выписаны из центра, а 46 еще были живы к 1 июля 1975 года. Это цензурированные данные. По этим 97 данным приведены графики оценок H m ;97 (x),m=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGTbaabeaakmaaBaaaleaacaaI7aGaaGyoaiaaiEdaaeqa aOGaaGikaiaadIhacaaIPaGaaGilaiaayIW7caaMi8UaaGjcVlaad2 gacaaI9aGaaGymaiaaiYcacaaIYaGaaGilaiaaiodaaaa@499F@  на рис. 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 3 по отдельности и на рис. 4 вместе:

 

Figure 1: Оценка 1H1;97(x)

 Fig. 1. Estimator  1H1;97(x)

 

Figure 2: Оценка 1H2;97(x)

 Fig. 2. Estimator 1H2;97(x)

 

Figure 3: Оценка 1H3;97(x)

 Fig. 3. Estimator 1H3;97(x) 

 

Figure 4: Оценка 1Hm;97(x),   m=   1,2,3

 Fig. 4. Estimator 1Hm;97(x),   m=   1,2,3

 

Из рисунков видно, что в отличие от экспоненциальных и множительных оценок только степенные оценки определены на всей прямой. Теперь при помощи оценок (1) построим доверительные полосы для неизвестной функции 1H(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaadIeacaaIOaGaamiEaiaaiMcaaaa@3CDE@ . Для этого будем следовать работам [3; 4] и используем доверительные полосы вида

                                               Mmn*x,μ1,μ2=M^mn1x,μ1,μ2;Mmn2x,μ1,μ2,

где m=1,2,3,

                                        M^mn1x,μ1,μ2=Hmnxn121Hmnxμ1dn12T+μ2dnxdn12T,

 Mmn2x,μ1,μ2=Hmnx+n12μ1dn12T+μ2dnxdn12T1+n12μ1dn12T+μ2dnxdn12T,

T=1128 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai2 dacaaIXaGaaGymaiaaikdacaaI4aaaaa@3C9B@ ; μ 1 =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaaGypaiaaigdaaaa@3C30@ ; μ 2 =1,37 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaikdaaeqaaOGaaGypaiaayIW7caaMe8UaaGjcVlaaigda caaISaGaaG4maiaaiEdaaaa@4314@  и d n x = ;x 1 N n u 2 d M n u;1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaa i2dadaWdrbqabSqaamaajadabaGaeyOeI0IaeyOhIuQaaG4oaiaadI haaiaawIcacaGLDbaaaeqaniabgUIiYdGcdaqadaqaaiaaigdacqGH sislcaWGobWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaacaWG1bGaey OeI0cacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGH sislcaaIYaaaaOGaamizaiaad2eadaWgaaWcbaGaamOBaaqabaGcda qadaqaaiaadwhacaaI7aGaaGymaaGaayjkaiaawMcaaiaai6caaaa@57E9@  Эти полосы для данных объема n=97 с использованием оценок (1) приведены на рис. 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ 7.

 

Figure 5: Доверительные полосы M1*;97(x;1;1,37)

 Fig. 5. Confidence bands M1*;97(x;1;1,37)

 

Figure 6: Доверительные полосы M2*;97(x;1;1,37)

 Fig. 6. Confidence bands M2*;97(x;1;1,37)

 

Figure 7: Доверительные полосы M3*;97(x;   1;   1,37)

 Fig. 7. Confidence bands M3*;97(x;   1;   1,37)

 

Заключение

 Сравнивают три вида оценок: экспоненциальной, множительной и степенной для функции выживания при случайном цензурировании справа. Ранее была установлена асимптотическая эквивалентность этих трех видов оценок при растущем объеме выборки в смысле сходимости к одному и тому же гауссовскому процессу. Для конкретной конечной выборки объема n=97 показаны некоторые преимущества степенной оценки по сравнению с остальными двумя. Следовательно, эта оценка лучше, чем остальные. Имеются численные примеры демонстрации результатов.  

×

About the authors

Abdurakhim A. Abdushukurov

Lomonosov Moscow State University, Tashkent branch

Email: a_abdushukurov@rambler.ru
ORCID iD: 0000-0002-0994-8127

professor of the Department of Applied Mathematics and Informatics

Uzbekistan, Tashkent

Sukhrob B. Bozorov

Gulistan State University

Author for correspondence.
Email: suxrobbek_8912@mail.ru
ORCID iD: 0009-0001-8133-4963

Doctoral student of the Department of Mathematics, Faculty of Information
Technology

Uzbekistan, Gulistan

References

  1. Abdushukurov A.A. Statistics of incomplete observations. Tashkent: Universitet, 2009, 269 p. (In Russ.)
  2. Abdushukurov A.A., Bozorov S.B., Nurmukhamedova N.S. Nonparametric Estimation of Distribution Function Under Right Random Censoring Based on Presmoothed Relative - Risk Function. Lobachevskii Journal of Mathematics, 2021, vol. 42, no. 2, pp. 257–268. DOI: https://doi.org/10.1134/S1995080221020049.
  3. Cs¨org˝o S. Estimating in the proportional hazards model of random censorship. Statistics, 1988, vol. 19, issue 3, pp. 437–463. DOI: https://doi.org/10.1080/02331888808802115.
  4. Cs¨org˝o S., Horvath L. Confidence bands from censored samples. Canadian Journal of Statistics-revue Canadienne De Statistique, 1986, vol. 14, № 2, pp. 131–144. DOI: https://doi.org/10.2307/3314659.
  5. Efron B. Censored Data and the Bootstrap. Journal of the American Statistical Association, 1981, vol. 76, no. 374, pp. 312–319. DOI: https://doi.org/10.2307/2287832.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Estimator

Download (145KB)
3. Fig. 2. Estimator

Download (134KB)
4. Fig. 3. Estimator

Download (141KB)
5. Fig. 4. Estimator

Download (152KB)
6. Fig. 5. Confidence bands

Download (189KB)
7. Fig. 6. Confidence bands

Download (179KB)
8. Fig. 7. Confidence bands

Download (179KB)

Copyright (c) 2023 Abdushukurov A.A., Bozorov S.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».