Methods for Network Modeling the Structure of Semantic Memory of Foreign Language Learners
- Authors: Barmin A.V.1, Velichkovsky B.B.2
-
Affiliations:
- Moscow State Linguistic University
- Lomonosov Moscow State University
- Issue: No 1 (850) (2024)
- Pages: 105-110
- Section: Psychological studies
- URL: https://journals.rcsi.science/2500-3488/article/view/307326
- ID: 307326
Cite item
Full Text
Abstract
This article is devoted to defining methods for network modeling of the structure of semantic memory of foreign language learners. The authors of the article conducted a theoretical analysis of domestic and foreign literary sources devoted to the problem under consideration. The results of the theoretical review show what network modeling methods exist today and which of them can be effectively used to study the structure of semantic memory of foreign language learners.
About the authors
Artem Vyacheslavovich Barmin
Moscow State Linguistic University
Author for correspondence.
Email: art.barmin@mail.ru
Post-graduate Student of the Department of Psychology and Pedagogical Anthropology
of the Institute of Humanities and Applied Sciences of Moscow State Linguistic University
Junior Researcher of the Laboratory for Cognitive Studies of Communication
Boris Borisovich Velichkovsky
Lomonosov Moscow State University
Email: velitchk@mail.ru
Doctor of Psychology, Professor at the Department of Methodology of Psychology
Faculty of Psychology, Lomonosov Moscow State University,
Head of the Laboratory for Cognitive Studies of Communication
References
- Tulving E. Episodic and semantic memory // Organization of memory / Eds. E. Tulving, W. Donaldson. New York: Academic Press, 1972. P. 381-402.
- Runge A., Hovy E. Exploring neural entity representations for semantic information // Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP. 2020. P. 204-216. doi: 10.48550/arXiv.2011.08951
- A platform for image recommendation in foreign word learning / M. N. Hasnine et al. // Companion Proceeding of the 9th International Conference on Learning Analytics & Knowledge (LAK'19). March 4-8, 2019, Tempe, Arizona, USA. 2019. P. 187-188.
- Дубинина Г. А., Каменская Н. В. Поиск новых форм контроля и оценки качества подготовки по иностранному языку в неязыковом вузе // Вестник Московского государственного лингвистического университета. Образование и педагогические науки. 2018. Вып. 2 (796). С. 202-211. EDN: XTAZZZ
- De Deyne S. et al. Structure at every scale: A semantic network account of the similarities between unrelated concepts // Journal of Experimental Psychology: General. 2016. Vol. 145 (9). P. 1228-1254.
- Kumar A. A., Steyvers M., Balota D. A. Semantic memory search and retrieval in a novel cooperative word game: A comparison of associative and distributional semantic models // Cognitive Science. 2021. Vol. 45 (10). P. 1-33. EDN: TEFEQC
- Морозова О. Структурное сетевое моделирование в когнитивной науке // Психологические исследования. 2017. Вып. 10 (55). C. 1-13.
- Steyvers M., Tenenbaum J. B. The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth // Cognitive science. 2005. Vol. 29 (1). P. 41-78.
- Zhang G. et al. Graph theoretical analysis of semantic fluency in patients with Parkinson's disease // Behavioural Neurology. 2022. P. 1-7. doi: 10.1155/2022/6935263 EDN: JQBAJV
- Morais A. S., Olsson H., Schooler L. J. Mapping the structure of semantic memory // Cognitive science. 2013. Vol. 37 (1). P. 125-145.
- Wulff D. U., Mata R. On the semantic representation of risk // Science advances. 2022. Vol. 8 (27). P. 1-13. EDN: FPFDJW
- Kenett Y. N. et al. The semantic distance task: Quantifying semantic distance with semantic network path length // Journal of Experimental Psychology: Learning, Memory, and Cognition. 2017. Vol. 43 (9). P. 1-21.
- Benedek M. et al. How semantic memory structure and intelligence contribute to creative thought: A network science approach // Thinking & Reasoning. 2017. Vol. 23 (2). P. 158-183.
- Agustin-Llach M. P. How age and L2 proficiency affectthe L2 lexicon // System. 2022. Vol. 104. doi: 10.1016/j.system.2021.102697 EDN: OXILTA
- Coltheart M. The MRC psycholinguistic database // The Quarterly Journal of Experimental Psychology. 1981. Vol. 33 (4). P. 497-505.
- Kuperman V., Stadthagen-Gonzalez H., Brysbaert M. Age-of-acquisition ratings for 30,000 English words // Behavior research methods. 2012. Vol. 44. P. 978-990. EDN: GWCZBY
- Nelson D. L., McEvoy C. L., Schreiber T. A. The University of South Florida free association, rhyme, and word fragment norms // Behavior Research Methods, Instruments, & Computers. 2004. Vol. 36 (3). P. 402-407. EDN: DARJUG
- Collins A. M., Loftus E. F. A spreading-activation theory of semantic processing // Psychological Review. 1975. Vol. 82 (6). P. 407-428.
Supplementary files
