Methods for Network Modeling the Structure of Semantic Memory of Foreign Language Learners

Cover Page

Cite item

Full Text

Abstract

This article is devoted to defining methods for network modeling of the structure of semantic memory of foreign language learners. The authors of the article conducted a theoretical analysis of domestic and foreign literary sources devoted to the problem under consideration. The results of the theoretical review show what network modeling methods exist today and which of them can be effectively used to study the structure of semantic memory of foreign language learners.

 

About the authors

Artem Vyacheslavovich Barmin

Moscow State Linguistic University

Author for correspondence.
Email: art.barmin@mail.ru

Post-graduate Student of the Department of Psychology and Pedagogical Anthropology  
of the Institute of Humanities and Applied Sciences of Moscow State Linguistic University 
Junior Researcher of the Laboratory for Cognitive Studies of Communication

Moscow, Russia

Boris Borisovich Velichkovsky

Lomonosov Moscow State University

Email: velitchk@mail.ru

 Doctor of Psychology, Professor at the Department of Methodology of Psychology 
Faculty of Psychology, Lomonosov Moscow State University,  
Head of the Laboratory for Cognitive Studies of Communication

Moscow, Russia

References

  1. Tulving E. Episodic and semantic memory // Organization of memory / Eds. E. Tulving, W. Donaldson. New York: Academic Press, 1972. P. 381-402.
  2. Runge A., Hovy E. Exploring neural entity representations for semantic information // Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP. 2020. P. 204-216. doi: 10.48550/arXiv.2011.08951
  3. A platform for image recommendation in foreign word learning / M. N. Hasnine et al. // Companion Proceeding of the 9th International Conference on Learning Analytics & Knowledge (LAK'19). March 4-8, 2019, Tempe, Arizona, USA. 2019. P. 187-188.
  4. Дубинина Г. А., Каменская Н. В. Поиск новых форм контроля и оценки качества подготовки по иностранному языку в неязыковом вузе // Вестник Московского государственного лингвистического университета. Образование и педагогические науки. 2018. Вып. 2 (796). С. 202-211. EDN: XTAZZZ
  5. De Deyne S. et al. Structure at every scale: A semantic network account of the similarities between unrelated concepts // Journal of Experimental Psychology: General. 2016. Vol. 145 (9). P. 1228-1254.
  6. Kumar A. A., Steyvers M., Balota D. A. Semantic memory search and retrieval in a novel cooperative word game: A comparison of associative and distributional semantic models // Cognitive Science. 2021. Vol. 45 (10). P. 1-33. EDN: TEFEQC
  7. Морозова О. Структурное сетевое моделирование в когнитивной науке // Психологические исследования. 2017. Вып. 10 (55). C. 1-13.
  8. Steyvers M., Tenenbaum J. B. The large-scale structure of semantic networks: Statistical analyses and a model of semantic growth // Cognitive science. 2005. Vol. 29 (1). P. 41-78.
  9. Zhang G. et al. Graph theoretical analysis of semantic fluency in patients with Parkinson's disease // Behavioural Neurology. 2022. P. 1-7. doi: 10.1155/2022/6935263 EDN: JQBAJV
  10. Morais A. S., Olsson H., Schooler L. J. Mapping the structure of semantic memory // Cognitive science. 2013. Vol. 37 (1). P. 125-145.
  11. Wulff D. U., Mata R. On the semantic representation of risk // Science advances. 2022. Vol. 8 (27). P. 1-13. EDN: FPFDJW
  12. Kenett Y. N. et al. The semantic distance task: Quantifying semantic distance with semantic network path length // Journal of Experimental Psychology: Learning, Memory, and Cognition. 2017. Vol. 43 (9). P. 1-21.
  13. Benedek M. et al. How semantic memory structure and intelligence contribute to creative thought: A network science approach // Thinking & Reasoning. 2017. Vol. 23 (2). P. 158-183.
  14. Agustin-Llach M. P. How age and L2 proficiency affectthe L2 lexicon // System. 2022. Vol. 104. doi: 10.1016/j.system.2021.102697 EDN: OXILTA
  15. Coltheart M. The MRC psycholinguistic database // The Quarterly Journal of Experimental Psychology. 1981. Vol. 33 (4). P. 497-505.
  16. Kuperman V., Stadthagen-Gonzalez H., Brysbaert M. Age-of-acquisition ratings for 30,000 English words // Behavior research methods. 2012. Vol. 44. P. 978-990. EDN: GWCZBY
  17. Nelson D. L., McEvoy C. L., Schreiber T. A. The University of South Florida free association, rhyme, and word fragment norms // Behavior Research Methods, Instruments, & Computers. 2004. Vol. 36 (3). P. 402-407. EDN: DARJUG
  18. Collins A. M., Loftus E. F. A spreading-activation theory of semantic processing // Psychological Review. 1975. Vol. 82 (6). P. 407-428.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».