Экспериментальное обоснование параметров стимуляции конвективной сушки зерна СВЧ-излучением

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследования проводили с целью определения возможности снижения общей энергоемкости процесса конвективной сушки товарного зерна на промышленных установках шахтного и барабанного типов производительностью от 2 до 50 т/ч по готовому продукту за счет применения малых доз микроволновой энергии, действующей на продукт перед засыпкой в сушильную камеру зерносушилок. Эксперименты выполняли в 2024 г. в ФГБОУ ВО «РГАУ-МСХА имени К. А. Тимирязева». Объектом исследования служила экспериментальная установка сушки с последовательным действием на продукт микроволнового излучения и конвективной тепловой энергии. Критерием энергоэффективности служило потребление энергии за единицу времени. В качестве продукта использовали семена пшеницы и ржи разной толщиной слоя в лотках «прозрачных» для микроволновой и конвективной тепловой энергии. Лотки располагались на цепном транспортере и перемещались посредством электропривода последовательно через камеру микроволнового нагрева на базе желобкового волновода, в который с двух сторон подавалась СВЧ-энергия от двух магнетронных источников, работающих в импульсном режиме в противофазе. После этого лотки перемещались в камеру конвективного обдува, где на продукт снизу подавался теплый воздух, имитируя режим конвективной сушки на промышленных установках. В первой серии экспериментов продукт массой 3 кг, влажностью 28…32 % и толщиной слоя 4 см помещался только в камеру конвективного обдува, где высушивался до 12 %, что соответствует ГОСТу на хранение зерна. Влажность зерна определялась термогравиметрическим способом. Для определения энергозатрат на сушку была проведена серия экспериментов. В ходе них была установлена мощность калорифера, которая составила 5 кВт. Затем были определены время сушки и энергоемкость процесса, которая составила от 8,5 до 9,5 кВт в час на килограмм испаряемой влаги. В следующей серии экспериментов на аналогичную навеску зерна воздействовали сначала микроволновым излучением на уровне 1…5 % от конвективной тепловой энергии. Затем лоток с продуктом перемещался на транспортере в камеру конвективного обдува, где происходило досушивание до 12 % влажности зерна. На основе построенных зависимостей снижения массы продукта за время сушки рассчитывалась суммарная энергоемкость, которая составила при добавлении 1 % СВЧ-мощности от тепловой в процесс сушки, от 6,8 до 7,8 кВт∙ч/кг по испаренной влаге и при 5 % – от 6,2 до 7,0 кВт∙ч/кг. Таким образом, в среднем снижение энергопотребления составило 19…27 %. Выявленный эффект при добавлении малых доз микроволновой энергии в процесс сушки зерна свидетельствует о перспективности использования маломощного микроволнового излучения на установках промышленной сушки зерна.

Об авторах

Е. А. Четвериков

Российский государственный аграрный университет – МСХА имени К. А. Тимирязева

Email: e.chetverikov@rgau-msha.ru
127434, Москва, ул. Тимирязевская, 49

А. Г. Арженовский

Российский государственный аграрный университет – МСХА имени К. А. Тимирязева

127434, Москва, ул. Тимирязевская, 49

Е. А. Шабаев

Российский государственный аграрный университет – МСХА имени К. А. Тимирязева

127434, Москва, ул. Тимирязевская, 49

В. Н. Беленов

Российский государственный аграрный университет – МСХА имени К. А. Тимирязева

127434, Москва, ул. Тимирязевская, 49

Список литературы

  1. Improving the efficiency of convective grain drying by using low-intensity RF radiation / A. V. Volgin, V. A. Kargin, E. A. Chetverikov, et al. // IOP Conference Series: Earth and Environmental Science. 2022. Vol. 954. 012017. URL: (дата обращения: 03.02.2025). https://iopscience.iop.org/article/10.1088/1755–1315/954/1/012017. doi: 10.1088/1755-1315/954/1/012017.
  2. Четвериков Е. А., Лягина Л. А., Моисеев А. П. Микроволновое и инфракрасное излучение в технологиях сушки продукции растительного происхождения: монография. Саратов: Амирит, 2016. 186 с.
  3. Математическая модель процесса комбинированной сушки товарного зерна в установках конвейерного типа / Е. А. Четвериков, К. М. Усанов, А. В. Волгин и др. // Аграрный научный журнал. 2023. № 12. С. 171–176.
  4. Технологическое обоснование сушки зерна аэрированием / И. Н. Аммосов, Ю. Ж. Дондоков, В. М. Дринча и др. // Известия Нижневолжского агроуниверситетского комплекса: Наука и высшее профессиональное образование. 2024. № 6 (78). С. 399–412. doi: 10.32786/2071-9485-2024-06-44.
  5. Лобачевский Я. П., Ценч Ю. С. Принципы формирования систем машин и технологий для комплексной механизации и автоматизации технологических процессов в растениеводстве. Сельскохозяйственные машины и технологии. 2022. Т. 16. № 4. С. 4–12.
  6. Будников Д. А. Система управления экспериментальной установкой электрофизического воздействия на зерно // Вестник Казанского государственного аграрного университета. 2022. Т. 17. № 2 (66). С. 59–67. doi: 10.12737/2073-0462-2022-57-63.
  7. Дринча В. М., Ценч Ю. С. Эволюция зерно-семяочистительной техники в России. Сельскохозяйственные машины и технологии. 2021. Т. 15. № 1. С. 24–33.
  8. Загоруйко М. Г., Башмаков И. А. Интенсификация теплообмена в каналах подачи агента сушки // Аграрный научный журнал. 2024. № 7. С. 105–109. doi: 10.28983/asj.y2024i7pp105-109.
  9. Васильев А. А., Тихомиров Д. А., Васильев А. Н. Исследование на компьютерной модели влияния элементов конструкции и влажности зерна на добротность СВЧ-конвективной зоны // Агроинженерия. 2024. Т. 26. № 1. С. 73–79. doi: 10.26897/2687-1149-2024-1-73-79.
  10. Щетинин М. П., Урманов А. И. Моделирование и математическая обработка результатов опытов по сушке семян рапса // Ползуновский вестник. 2023. № 2. С. 131–135. doi: 10.25712/ASTU.2072-8921.2023.02.017.
  11. Исаев А. В., Бастрон А. В., Яхонтова B. С. Исследование влияния степени неравномерности нагрева семян рапса в ЭМП СВЧ на их энергию прорастания и всхожесть // Вестник Красноярского ГАУ. 2016. № 4. С. 131–137.
  12. Разработка мобильной зерносушилки и обоснование ее конструктивно-режимных параметров / Д. Ю. Данилов, С. С. Казаков, Е. А. Криштанов и др. // Аграрная наука. 2022. № 11. С. 122–127. doi: 10.32634/0869-8155-2022-364-11-122-127.
  13. Особенности процесса сушки зерна пшеницы в элементарном слое / Г. В. Карпенко, В. И. Курдюмов, А. А. Павлушин и др. // Пермский аграрный вестник. 2021. № 4(36). С. 4–13. doi: 10.47737/2307-2873_2021_36_4.
  14. Голубкович А. В., Павлов С. А. Оптимизация сушки зерна при осциллирующем режиме // Сельскохозяйственные машины и технологии. 2014. № 1. С. 10–13.
  15. Drincha V. M., Tsench Yu. S. Fundamentals and prospects for the technologies development for post-harvest grain processing and seed preparation. // Agricultural Machinery and Technologies. 2020. Т. 14. № 4. С. 17–25.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».