Reaction of barley varieties on the content of polyphenols on stress soil backgrounds

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In order to assess the stress resistance of genotypes, we studied the influence of soil stressors on the content of polyphenolic substances in grain, straw, and roots of barley (Hordeum vulgare L.) of various varieties with differentiation by origin (domestic and foreign selection) and methods of production (hybridization and cell selection). The plants were grown in vegetative tanks with sod-podzolic soil in natural conditions until the seeds ripened. The experimental design included the following options: with excess cadmium (Cd2+ 6.4 mg/kg); increased acidity (pHKCl=4.8); simulated drought in the interphase period, emergence into the tube - earing; without stress load at pHKCl=6.5 (control). The content of polyphenols in terms of gallic acid was determined by the spectrophotometric method. The total accumulation of polyphenols in grain under drought conditions (9.18…11.13 mg/g) and in the presence of excess Cd2+ in the soil (9.07…9.10 mg/g) exceeded the control by 2.5…14.8 % and 2.8…8.5 %, respectively. On acidic soil, compared with the control, the amount of polyphenols in grain significantly decreased in all domestically bred barley varieties that underwent selection on acidic soils or selection on acidic selective media in vitro, in Vitrum - by 16.1 %, Rodnik Prikamye - by 11.8 %. In varieties of foreign selection (Zazersky 85, Triumph and Tallon), under acidic conditions, the value of this indicator, on the contrary, increased by 2.2…4.8 %. Most of the polyphenols were in a bound state. The distribution of free fraction polyphenols among organs (% of the total amount in the plant) was revealed: straw (41.4…49.1) > roots (32.4…42.5) > grain (15.6…22.6). Among the stressors studied, increased acidity contributed to a greater extent to the increase in the relative accumulation of free polyphenols and most significantly in the roots - in varieties and regenerants of the selection of the Federal Agrarian Research Center of the North--East by 19.0 %; foreign selection - by 35.7 %.

作者简介

O. Shupletsova

Federal Agrarian Scientific Center of the North-East of N. V. Rudnitsky

Email: olga.shuplecova@mail.ru
610007, Kirov, ul. Lenina, 166 a

E. Tovstik

Federal Agrarian Scientific Center of the North-East of N. V. Rudnitsky

610007, Kirov, ul. Lenina, 166 a

I. Shchennikova

Federal Agrarian Scientific Center of the North-East of N. V. Rudnitsky

610007, Kirov, ul. Lenina, 166 a

参考

  1. Nexus on climate change: Agriculture and possible solution to cope future climate change stresses / A. Shahzad, S. Ullah, A. A. Dar, et al. // Environmental Science and Pollution Research. 2021. Vol. 12. No. 28. P. 14211-14232. doi: 10.1007/s11356-021-12649-8.
  2. Arzani A., Ashraf M. Smart Engineering of Genetic Resources for Enhanced Salinity Tolerance in Crop Plants // Critical Reviews in Plant Sciences. 2016. Vol. 3. No. 35. P. 146-189. doi: 10.1080/07352689.2016.1245056.
  3. Шуплецова О. Н., Щенникова И. Н. Результаты использования клеточных технологий в создании новых сортов ячменя, устойчивых к токсичности алюминия и засухе // Вавиловский журнал генетики и селекции. 2016. Т. 20. № 5. С. 623-628. doi: 10.18699/VJ16.183.
  4. Investigation of phenolic compounds with antioxidant activity in barley and oats affected by variation in growing location / Sh. Rao, A. B. Santhakumar, K. A. Chinkwo, et al. // Cereal Chemistry. 2020. Vol. 4. No. 97. P. 772-782. doi: 10.1002/cche.10291.
  5. Role and regulation of plants phenolics in abiotic stress tolerance: an overview / M. I. Naikoo, M. I. Dar, F. Raghib, et al. // In book: Plant Signaling Molecules. Elsevier (Woodhead Publishing), 2019. Ch. 9. Р. 157-168. doi: 10.1016/B978-0-12-816451-8.00009-5.
  6. Аллагулова Ч. Р., Ласточкина О. В. Снижение уровня окислительного стресса в растениях пшеницы под влиянием эндофитных бактерий в условиях засухи // Экобиотех. 2020. Т. 3. № 2. С. 129-134. doi: 10.31163/2618-964Х-2020-3-2-129-134.
  7. Sirin S., Aslim B. Determination of antioxidant capacity, phenolic acid composition and antiproliferative effect associated with phenylalanine ammonia lyase (PAL) activity in some plants naturally growing under salt stress // Proceedings. 2017. Vol. 1. No. 1. Article 1035. URL: https://www.mdpi.com/2504-3900/1/10/1035 (дата обращения: 01.03.2023). doi: 10.3390/proceedings1101035.
  8. Guo T. R., Zhang G. P., Zhang Y. H. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium // Colloids Surf B Biointerfaces. 2007. Vol. 2. No. 57. Р. 182-188. doi: 10.1016/j.colsurfb.2007.01.013.
  9. Functional Properties of Polyphenols in Grains and Effects of Physicochemical Processing on Polyphenols / S. Tian, Y. Sun, Z. Chen, et al. // Journal of Food Quality. 2019. Article 2793973. URL: https://www.hindawi.com/journals/jfq/2019/2793973/ (дата обращения: 01.03.2023). doi: 10.1155/2019/2793973.
  10. Рихтер А. А., Горина В. М. Полифенолы тканей плодов косточковых культур в профилактике некоторых заболеваний человека // Плодоводство. 2018. Т. 30(1). С. 273-283.
  11. Журлова Е. Д., Бондаренко А. В., Базильский Д. А. и др. Содержание свободных и связанных полифенолов злаковых и бобовых культур // Grain Products and Mixed Fodder's. 2017. Vol. 17. No. 2. P. 14-18.
  12. Influence of Abiotic Stress Factors on the Antioxidant Properties and Polyphenols Profile Composition of Green Barley (Hordeum vulgare L.) / P. L. Kowalczewski, D. Radzikowska, E. Ivanisova, et al. // International Journal of Molecular Sciences. 2020. Vol. 21. No. 2. Article 397. URL: https://www.mdpi.com/1422-0067/21/2/397 (дата обращения: 01.06.2023). doi: 10.3390/ijms21020397.
  13. Study of resistance of spring barley genotypes to zinc and cadmium / R. A. Alybaeva, U. A. Shilmanova, Z. A. Inelova, et al. // Eurasian Journal of Ecology. 2019. V. 59. No. 2. P. 60-68. doi: 10.26577/EJE.2019.v59.i2.05.
  14. Kiani R., Arzani A., Maibod S. A. M. M. Polyphenols, Flavonoids, and Antioxidant Activity Involved in Salt Tolerance in Wheat, Aegilops cylindrica and Their Amphidiploids // Frontiers in Plant Science. 2021. Vol. 12. URL https://www.frontiersin.org/articles/10.3389/fpls.2021.646221/full (дата обращения: 01.06.2023). doi: 10.3389/fpls.2021.646221.
  15. Effects of sprouting and salt stress on polyphenol composition and antiradical activity of einkorn, emmer and durum wheat / F. Stagnari, A. Galieni, S. D'egidio, et al. // Italian Journal of Agronomy. 2018. Vol. 4. No. 11. doi: 10.4081/ija.2017.848.
  16. Effect of the time and temperature of germination on the phenolic compounds of Triticum aestivum, L. and Panicum miliaceum, L. / D. Ceccaroni, V. Alfeo, E. Bravi, et al. // Lebensmittel-Wissenschaft und-Technologie. 2020. Vol. 8. No. 127. Article 109396. URL: https://www.agronomy.it/index.php/agro/article/view/848 (дата обращения: 01.06.2023). doi: 10.1016/j.lwt.2020.109396.
  17. Supplemental Effects of Biochar and Foliar Application of Ascorbic Acid on Physio-Biochemical Attributes of Barley (Hordeum vulgare L.) under Cadmium-Contaminated Soil / S. Yaseen, S. F. Amjad, N. Mansoora, et al. // Sustainability. 2021. Vol. 13. No. 16. Article 9128. URL: https://www.mdpi.com/2071-1050/13/16/9128 (дата обращения: 01.06.2023). doi: 10.3390/su13169128.
  18. Identification of the gene network modules highly associated with the synthesis of phenolics compounds in barley by transcriptome and metabolome analysis / Z. Han, M. Ahsan, M. F. Adil, et al. // Food Chemistry. 2020. Vol. 323. Article 126862. URL: https://www.sciencedirect.com/science/article/pii/S030881462030724X?via%3Dihub (дата обращения: 01.06.2023). doi: 10.1016/j.foodchem.2020.126862.
  19. Проблемы деградации и восстановления продуктивности земель сельскохозяйственного назначения в России / под ред. А. В. Гордеева, Г. А. Романенко. М.: Росинформагротех, 2008. 67 с.
  20. Cadmium pollution from phosphate fertilizers in arable soils and crops: an overview / A. G. Nino-Savala, Z. Zhuang, X. Ma, et al. // Frontiers of Agricultural Science and Engineering. 2019. Vol. 6. No. 4. P. 419-430. doi: 10.15302/J-FASE-2019273.
  21. Селюкова С. В. Тяжелые металлы в агроценозах // Достижения науки и техники АПК. 2020. Т. 34. № 8. С. 85-93. doi: 10.24411/0235-2451-2020-10815.
  22. Термодинамическое состояние кадмия и свинца в почвах каштаново-солонцового комплекса / А. П. Ендовицкий, В. П. Калиниченко, В. Б. Ильин и др. // Агрохимия. 2008. № 9. С. 59-65.
  23. Фазлыева А. С., Даукаев Р. А., Каримов Д. О. Влияние кадмия на здоровье населения и способы профилактики его токсических эффектов // Медицина труда и экология человека. 2022. № 1 (29). С. 220-235. doi: 10.24411/2411-3794-2022-10115.
  24. Шеромов А. М., Товстик Е. В., Шуплецова О. Н. Валидация методики определения полифенолов в зерне ячменя // Съезд общества физиологов растений России "Биология растений в эпоху глобальных изменений климата: тезисы докладов. Уфа: УИБ УФИЦ РАН, 2023. С. 395.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##