Resistance of rice Oryza sativa L.. doubled haploids to lodging for the far eastern breeding

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The phenotypic variability of rice Oryza sativa L. androgenic doubled haploids lines (DH), intended for lodging resistance breeding, was studied. The lines used were obtained from F2 hybrids of the combinations Kitaets×(VNIIR23×Kenzo) - K×V×K (plants No. 26 and No. 28) and Don 4237× (Szorvasii 70× Heilunjiang) - D×Z×H (plant No. 8). Variety Primorsky 29 served as the standard. In 2020, DH lines and parental forms were grown under the conditions of a culture room in plastic cups filled with soil (temperature 25 °C, illumination 5000 lux, day 16 hours). In 2021 the seed offspring of the previous year were sown on the growing area in vessels 360×60 cm in size, 0.65 m3 in volume, filled with field soil. Each sample was sown in two rows, 25 plants per row. According to the ANOVA results, the DH lines and parental forms differed from each other in all characteristics in both years (p<0.018). The panicle grain mass rises with an increasing culm diameter, which is appeared in the average correlation of these features (r=0.63, p<0.05). The use of haploid technology anther culture in vitro made it possible to obtain the DH lines exceeded the parental forms by 0.67-1.24 mm and the control variety Primorsky 29 by 0.06-0.61 mm in diameter and straw strength index by 25-50%. At the same time, the productivity of the panicle remained at the control level (0.9-1.2 g) in most of the studied lines. One line exceeded the number of grains by 11.1-16.4 pcs. and the mass of grain of the main panicle per 0.5-0.7 g parental forms and control variety. Early maturity was transferred from one of the parental forms to the DH lines. A number of doubled haploids lines have been created for rice O. sativa breeding for lodging resistance, which is necessary for the Far Eastern rice cultivation.

Негізгі сөздер

Авторлар туралы

M. Ilyushko

Chaika Federal Scientific Center for Agrobiotechnology of the Far East

Email: ilyushkoiris@mail.ru
692539, Primorskii krai, Ussuriisk, pos. Timiryazevskii, ul. Volozhenina, 30

M. Romashova

Chaika Federal Scientific Center for Agrobiotechnology of the Far East

692539, Primorskii krai, Ussuriisk, pos. Timiryazevskii, ul. Volozhenina, 30

S. Guchenko

Chaika Federal Scientific Center for Agrobiotechnology of the Far East

692539, Primorskii krai, Ussuriisk, pos. Timiryazevskii, ul. Volozhenina, 30

Әдебиет тізімі

  1. Genealogy of the "green revolution" gene in rice / H. Nagano, K. Onishi, M. Ogasawara, et al. // Genes. Genet. Syst. 2005. Vol. 80. P. 351-356. doi: 10.1266/ ggs.80.351.
  2. QTL-seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.) / G. Kadambari, L. R. Vemireddy, A. Srividhya, et al. // Plant. Cell. Reports. 2018. Vol. 37. P. 677-687. doi: 10.1007/s00299-018-2260-2.
  3. Three genetic systems controlling growth, development and productivity of rice (Oryza sativa L.): a reevaluation of the "green revolution" / F. Zhang, Y.-Z. Jiang, S.-B. Yu., et al. // Theor. Appl. Genet. 2013. Vol. 126. P. 1011- 1024. doi: 10.1007/s00122-012-2033-1.
  4. Deep rooting conferred by DEEPER ROOTING1 enhances rice yield in paddy fields / Y. Arai-Sanoh,T. Takai, S. Yashinaga, et al. // Sci. Rep. 2014. Vol.4. Article 5563. URL: https://www.nature.com/articles/srep05563 (дата обращения: 21.05.2022). doi: 10.1038/srep05563.
  5. Valluru R., Reynolds M. P., Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat // Theor. Appl. Genet. 2014. Vol. 127. P. 1463-1489. doi: 10.1007/ s00122-014-2332-9.
  6. Гончарова Ю. К., Гончаров С. В., Чичарова Е. Е. Локализация хромосомных регионов, определяющих эффективность фотосинтеза у российских сортов риса // Генетика. 2018. T. 54. № 7. С. 785-794. doi: 10.1134/S0016675818070032.
  7. Development and validation of allele-specific SNP/ indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice Oryza sativa L. / S. Kim, J. Ramos, M. Ashikari, et al. // Rice. 2016. Vol. 9. Article12. URL: https://thericejournal.springeropen.com/articles/10.1186/s12284-016-0084-7 (дата обращения: 26.05.2022). doi: 10.1186/s12284-016-0084-7.
  8. Rational desigh of high-yield and superior-quality rice / D. Zeng, Z. Tian, Y. Rao, et al. // Nature Plants. 2017. Vol. 3. Article 17031. URL: https://www.nature.com/articles/nplants201731 (дата обращения: 18.12.2021). doi: 10.1038/nplants.2017.31.
  9. Effect of rice breeding process on improvement of yield and quality in China / F. Cheng, X. Quan, X. Znengjin, et al. // Rice Sci. 2020. Vol. 27. No. 5. P. 363-367. doi: 10.1016/j.rsci.2019.12.009.
  10. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with aQTL gene involved in another mechanism / K. Yano, T. Ookawa, K. Aya, et al. // Molecular Plant. 2015. Vol.8. P. 303-314. doi: 10.1016/j.molp.2014.10.009.
  11. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture / Z. Lu, H. Yu, G. Xiong, et al. // Plant Cell. 2013. Vol. 25. P. 3743-3759. doi: 10.1105/tpc.113.113639.
  12. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice / Y. Jiao, Y. Wang, D. Xue, et al. // Neture Genetics. 2010. Vol. 42. No. 6. P. 541-545. doi: 10.1038/ng.591.
  13. Molecular breeding of "Swarna", a mega rice variety for lodging resistance / G. R. Merugumala, P. V. Satyanarayana, N. Chamundeswari, et al. // Mol. Breeding. 2019. Vol. 39. Article 55. URL: https://link.springer.com/article/10.1007/s11032-019-0961-z (дата обращения: 11.11.2021). doi: 10.1007/s11032-019-0961-z.
  14. Morphological and molecular characterization of new plant type core set for yield and culm strength traits in rice (Oryza sativa L.) / R. Bagudam, K. B. Eswari, J. Badri, et al. //j. Plant Biochem. Biotechnol. 2021. Vol. 30. P. 233-242. doi: 10.1007/s13562-020-00581-w.
  15. Sarao N. K., Gosal S. S. In vitro androgenesis for accelerated breeding in rice // Biotechnologies of crop improvement. Springer, Cham. Springer International Publishing AG, Switzerland, 2018. Vol. 1. P. 407-435. doi: 10.1007/978-3-319-78283-6.
  16. Илюшко М. В., Гученко С. С., Ромашова М. В. Внутрикаллусная и межкаллусная морфологическая изменчивость удвоенных гаплоидов риса, полученных андрогенезе in vitro // Российская сельскохозяйственная наука, 2020. № 6. С. 11-15. doi: 10.31857/2500262720060034.
  17. Dependence of porosity of amorphous silicon dioxide prepared from rice straw on plant variety / L. A. Zhemnukhova, A. E. Panasenko, A. A. Artem'yanov, et al. // BioResources. 2015. Vol. 10. No. 2. P. 3713-3723. doi: 10.15376/biores.10.2.3713-3723.
  18. Гученко С. С., Борзаница А. А., Бельская Н. Г. Оценка селекционных образцов риса конкурсного сортоиспытания в условиях Приморского края // Дальневосточный аграрный вестник. 2021. Т. 4. № 60. С. 40-46. doi: 10.24412/1999-6837-2021-4-40-45.
  19. Гены сельскохозяйственных растений, модифицированные с помощью системы CRISPR/Cas / А. М. Короткова, С. В. Герасимова, В. К. Шумный и др. // Вавиловский журнал генетики и селекции. 2017. Т. 21. № 2. С. 250-258. doi: 10.18699/VJ17.244.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>