Influence of various fractions of ultrafine humato-saproel suspension on the growth, development and quality of basil (Ocimum basilicum L.) products in comparison with chemical fertilizers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of a study of the effect of various fractions of humic acids (humic and fulvic acids), extracted from ultrafine humic-sapropel suspension, on the growth and development of various varieties of basil used for medicinal purposes. The plants were grown in a closed grow box for 50 days, while maintaining a stable internal microclimate and an optimal level of insolation for the culture inside the working area. Four varieties of commercial use were chosen as objects for the study: Green Large (mid-ripening), Emily (early-ripening), Lemona (early-ripening) and Marian (early-ripening). A soil mixture consisting of 50 % vermiculite and 50 % peaty-gley soil was used as a solid substrate for sowing seeds: the total organic content was 30.4 %; Ntotal - 1.4 %; pHKCl - 5.57; mobile forms P2O5- 8.8 and K2O - 8.2 mg/kg. Both fractions of humic acids were added as dilute solutions at a concentration of 0.01 %. The treatment of plants was carried out by alternating two methods: a single application of each fraction separately according to the options under the root, and a foliar method, when spraying the leaves once a week. In the control variant, 1.0 N water was used for irrigation during the entire growing season. Knop nutrient solution without humic acid additives. The results of morphometric and chemical analyzes showed that the Lemon variety proved to be the best candidate for further scientific research. The treated plants did not differ in height and biomass from the controls (average 29.75 mg in treatment versus 29.00 mg in control). The best organization in the diet, based on the calculation of element structural coherence indices, also resulted in a slight decrease in the efficiency of photosynthesis in this variety, which is indirectly indicated by the values of the SPAD chlorophyll optic counter (31.98 units on average during processing, against 35.54 units on the control). It is concluded that due to the introduction of organic additives, the variety spends the least amount of energy for its growth, even in a substrate depleted in elements.

About the authors

S. I Loskutov

All-Russia Research Institute for Food Additives - a branch of the Federal State Budget Scientific Institution �Federal Scientific Center for Food Systems named after V. M. Gorbatova�, Russia Academy of Sciences

191014, Sankt-Peterburg, Liteiny prosp., 55

J. V Pukhalsky

All-Russia Research Institute for Food Additives - a branch of the Federal State Budget Scientific Institution �Federal Scientific Center for Food Systems named after V. M. Gorbatova�, Russia Academy of Sciences

Email: puhalskyyan@gmail.com
191014, Sankt-Peterburg, Liteiny prosp., 55

A. S Mityukov

St. Petersburg Federal Research Center of the Russian Academy of Sciences, Institute of Limnology

196105, Sankt-Peterburg, ul. Sevastyanova, 9

N. I Vorobyov

All-Russia Research Institute for Agricultural Microbiology

196608 Sankt-Peterburg - Pushkin, sh. Podbelskogo, 3

R. I Glushakov

S.M. Kirov Military Medical Academy;Saint Petersburg state pediatric medical university

194044, Sankt-Peterburg, ul. Academika Lebedeva, 6;194100, Sankt-Peterburg, ul. Litovskaya, 2, lit. V

References

  1. A Comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum / K. Dhama, K. Sharun, M. B. Gugjoo, et al. // Food Reviews International. 2021. URL: https://www.tandfonline.com/doi/full/10.1080/87559129.2021.1900230?scroll=top&needAccess=true&role=tab (дата обращения: 05.12.2022). doi: 10.1080/87559129.2021.1900230.
  2. A comprehensive review on Ocimum basilicum / B. Purushothaman, R. Prasanna Srinivasan, P. Suganthi, et al. // Journal of Natural Remedies. 2018. Vol. 18. No. 3. P. 71-85. doi: 10.18311/jnr/2018/21324.
  3. The potential effects of Ocimum basilicum on health: a review of pharmacological and toxicological studies / P. Sestili, T. Ismail, C. Calcabrini, et al. // Expert Opinion on Drug Metabolism & Toxicology. 2018. Vol. 14. No. 7. P. 679-692. doi: 10.1080/17425255.2018.1484450.
  4. Shahrajabian M. H., Sun W., Cheng Q. Chemical components and pharmacological benefits of Basil (Ocimum Basilicum): a review // International Journal of Food Properties. 2020. Vol. 23. No. 1. P. 1961-1970. doi: 10.1080/10942912.2020.1828456.
  5. Thakur A., Rawat A. K. Thakur T. Economic analysis of plant nutrient sources on sweet basil (Ocimum basilicum) // Economic affairs. 2014. Vol. 59. Special Issue. P. 837-841.
  6. Sweet basil can be grown hydroponically at low phosphorus and high sodium chloride concentration: Effect on plant and nutrient solution management / R. P. Germano, S. Melito, S. Cacini, et al. // Scientia Horticulturae. 2022. Vol. 304. No. 15. URL: https://www.sciencedirect.com/science/article/abs/pii/S0304423822004459?via%3Dihub (дата обращения: 05.12.2022). doi: 10.1016/j.scienta.2022.111324.
  7. Physiological effects of humic substances on higher plants / S. Nardi, D. Pizzeghello, A. Muscolo, et al. // Soil Biology and Biochemistry. 2002. Vol. 34. No. 11. P. 1527-1536. doi: 10.1016/s0038-0717(02)00174-8.
  8. El-Ziat R. A., Swaefy H. M., Esmail S. E. A. The response of red rubin basil plant to organic fertilizer and humic acid versus chemical fertilizers // Middle East Journal of Agriculture Research. 2018. Vol. 7. No. 3. P. 740-751.
  9. Стеценко Л. А., Пашковский П. П. Изменение содержания пигментов в базилике при освещении растений светодиодными лампами // Вопросы биологической, медицинской и фармацевтической химии. 2018. Т. 21. № 12. С. 50-53.
  10. Response of basil growth and morphology to light intensity and spectrum in a vertical farm / D. H. Larsen, E. J. Woltering, C. C. S. Nicole, et al. // Frontiers in Plant Science. 2020. No. 11. doi: 10.3389/fpls.2020.597906.
  11. Effect of light intensity on the growth and antioxidant activity of sweet basil and lettuce / R. Sutulienė, K. Laužikė, T. Pukas, et al. // Plants. 2022. Vol. 11. No. 13. URL: https://www.mdpi.com/2223-7747/11/13/1709 (дата обращения: 05.12.2022). doi: 10.3390/plants11131709.
  12. Growth and metabolism of basil grown in a new-conceptmicrocosm under different lighting conditions / L. d'Aquino, B. Lanza, E. Gambale, et al. // Scientia Horticulturae. 2022. Vol. 299. URL: https://www.sciencedirect.com/science/article/abs/pii/S0304423822001601 (дата обращения: 05.12.2022). doi: 10.1016/j.scienta.2022.111035.
  13. Optimization of basil (Ocimum basilicum L.) production in LED light environments - a review / L. Sipos, L. Balazs, G. Szekely, et al. // Scientia Horticulturae. 2021. № 289. 110486. URL: https://www.sciencedirect.com/science/article/pii/S0304423821005938 (дата обращения: 05.12.2022). doi: 10.1016/j.scienta.2021.110486.
  14. Growth and nutrient utilization in basil plant as affected by applied nutrient quantity in nutrient solution and light spectrum / X. Ren, N. Lu, W. Xu, et al. // Biology. 2022. Vol. 11. No. 7. P. 991. URL: https://www.mdpi.com/2079-7737/11/7/991 (дата обращения: 05.12.2022). doi: 10.3390/biology11070991.
  15. Технологические приемы выращивания рассады зеленных овощных культур в условиях защищенного грунта / И. Д. Еськов, Ю. К. Земскова, Е. В. Лялина и др. // Аграрный научный журнал. 2020. № 10. С. 19-23.
  16. Пансю М., Готеру Ж. Анализ почвы. Справочник. Минералогические, органические и неорганические методы анализа. СПб.: Профессия, 2014. 800 с.
  17. Validated fast procedure for trace element determination in basil powder / M. E. Ghanjaoui, M. L. Cervera, M. E. Rhazi, et al. // Food Chemistry. 2011. Vol. 125. No. 4. P. 1309-1313. doi: 10.1016/j.foodchem.2010.09.091.
  18. R Core Team. R. A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Vienna, Austria, 2018. URL: https://www.R-project.org (дата обращения: 01.08.2020).
  19. Weinberg S., Harel D., Abramowitz S. Statistics Using R: An Integrative Approach. Cambridge: Cambridge University Press, 2020. 692 p. doi: 10.1017/9781108755351.
  20. Битюцкий Н. П. Микроэлементы высших растений. 2-е изд. СПб.: СПбГУ, 2020. 368 с.
  21. Khater R. M., Abd-Allah W. H.A. Effect of some trace elements on growth, yield, and chemical constituents of Ocimum basilicum plants // European Journal Of Development Research. 2017. Vol. 1. No. 67. P. 1-23. URL: https://ejdr.journals.ekb.eg/article_5842.html (дата обращения: 05.12.2022). doi: 10.21608/ejdr.2017.5842.
  22. Regina A., Glory J. R., Tulin A. B. Micronutrients biofortification (Zn, Fe, Cu, and Mn) improves the growth, yield, and chlorophyll contents of sweet basil (Ocimum basilicum L.) grown on a near neutral soil // Science and Humanities Journal. 2021. Vol. 15. P. 70-86. doi: 10.47773/shj.1998.151.5.
  23. Production of basil (Ocimum basilicum L.) under different soilless cultures / E. S. Khater, A. Bahnasawy, W. Abass, et al. //Scientific Reports. 2021. Vol. 11. No. 1. URL: https://www.nature.com/articles/s41598-021-91986-7 (дата обращения: 05.12.2022). doi: 10.1038/s41598-021-91986-7

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies