Mineral nutrition of plants in applying growth-promoting rhizospherebacteriain copper-contaminated soil
- Authors: Shabayev V.P.1, Ostroumov V.E.1
-
Affiliations:
- Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
- Issue: No 1 (2025)
- Pages: 45-48
- Section: Agro-soil science and agroecology
- URL: https://journals.rcsi.science/2500-2627/article/view/292005
- DOI: https://doi.org/10.31857/S2500262725010082
- EDN: https://elibrary.ru/CSNTTQ
- ID: 292005
Cite item
Abstract
Impact of growth-promoting rhizobacteria of genus Pseudomonas application on mineral nutrition of spring wheat in growing on artificially Cu-contaminated in elevated concentration agrogray soil were studied in pot experiment. Plants were grown up to shooting stage with copper nitrate contamination at a rate of 300 mg Cu/kg of soil against background of PK fertilization. Content of Cu and other elements in shoots and roots after combustion in mixture of HNO3: HClO4 (2:1) was determined by inductively coupled plasma emission-optical spectrometry, potassium by flame photometry. N content was determined by indophenol technique after combustion of plant material in dilute sulfuric acid with catalyst. Bacteria application increased plant resistance to elevated copper concentration and increased plant weight, thereby reducing phytotoxicity of heavy metal. Positive effect of bacteria was due to improvement in mineral nutrition of plants – increase in uptake of biophilic elements N, P, K, Ca, Mg, Fe, Mn and Zn from contaminated soil. At the same time, bacteria as a whole did not affect content of almost all elements in plant shoots and increased uptake of elements by plants due to the promotion of their growth, probably as a result of production of physiologically active compounds by bacteria. Growth promotion of heavy metal-contaminated plants and elevated it uptake by plants in application of bacteria occurred without changes in soil medium reaction. Improving mineral nutrition of plants, along with increasing barrier ability of root system to increase of heavy metal uptake by roots in application of all bacteria, are main mechanisms for growth promoting contaminated plants.
Full Text

About the authors
V. P. Shabayev
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Author for correspondence.
Email: vpsh@rambler.ru
доктор биологических наук
Russian Federation, 2, Institutskaya St., Pushchino, Moscow Region, 142290V. E. Ostroumov
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Email: vpsh@rambler.ru
Russian Federation, 2, Institutskaya St., Pushchino, Moscow Region, 142290
References
- Copper toxicity in plants: Nutritional, physiological and biochemical aspects / F. J. R. Cruz, R. L. da Cruz Ferreira, S. S. Conceicao, et al. // Advances in Plant Mechanisms. Ed. J. N. Kimatu. 2022. 370 p. URL: http://www.doi: 10.5772/105212/intechopen (дата обращения: 17.04.2023). doi: 10.5772/105212/intechopen.
- Recent progress on emerging technologies for trace elements-contaminated soil remediation. Review / T. El. Rasafi, A. Haouas, A. Tallou, et al. // Chemosphere. 2023. Vol. 341. 140121. URL: ubmed.ncbi.nlm.nih.gov/37690564 (дата обращения: 17.04.2023). doi: 10.1016/j.chemosphere.2023.140121.
- Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review / A. Ullah, S. Heng, M. F. H. Munis, et al. // Environmental and Experimental Botany. 2015. Vol. 117. P. 28–40. doi: 10.1016/j.envexpbot.2015.05.001.
- Mishra J., Singh R., Arora N. K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Mini review article. Sec. Microbial Symbioses // Frontiers in Microbiology. 2017. Vol. 8. URL: www.pubmed.ncbi.nlm.nih.gov/28932218 (дата обращения: 17.04.2023). doi: 10.3389/fmicb.2017.01706.
- Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Review article / J. K. Sharma, N. Kumar, N. P. Singh, et al. // Frontiers in Plant Science. 2023. Vol. 14. P. 1–13. URL: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1076876/full (дата обращения: 17.04.2023). doi: 10.3389/fpls.2023.1076876.
- Dorjey S., Dolkar D., Sharma R. Plant growth promoting rhizobacteria Pseudomonas // International Journal of Current Microbiology and Applied Sciences. 2017. Vol. 7. P. 1335–1344. doi: 10.20546/ijcmas.2017.607.160.
- Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils: Review Article / L. Saha, J. Tiwari, K. Bauddh, et al. // Frontiers in Microbiology. 2021. 12. 723. URL: www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.731723/full (дата обращения: 17.04.2023). doi: 10.3389/fmicb.2021.731723.
- Bioaugmentation with copper tolerant endophytePseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus / A. Kumar, Tripti, O. Voropaeva, et al. // Chemosphere. 2021. Vol. 266. 128983. URL: www.sciencedirect.com/science/article/abs/pii/S0045653520331805 (дата обращения: 17.04.2023). doi: 10.1016/j.chemosphere.2020.128983.
- Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Сu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil / X. M. Ren, S. J. Guo, W. Tian, et al. // Frontiers in Microbiology. 2019. Vol. 10. P. 1–12. URL: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.01455/full (дата обращения: 17.04.2023). doi: 10.3389/fmicb.2019.01455.
- Pattnaik S., Mohapatra B., Gupta A. Plant growth-promoting microbe mediated uptake of essential nutrients (Fe, P, K) for crop stress management: microbe–soil–plant continuum. Review article // Frontiers in Agronomy. 2021. Vol. 3. P. 1–20. URL: https://www.frontiersin.org/journals/agronomy/articles/10.3389/fagro.2021.689972/full (дата обращения: 17.04.2023). doi: 10.3389/fagro.2021.689972.
- Tak H. I., Ahmad F., Babalola O. O. Advances in the application of plant growth- promoting rhizobacteria in phytoremediation of heavy metals. Review // Reviews of Environmental Contamination and Toxicology. 2013. Vol. 223. P. 33–52. doi: 10.1007/978-1-4614-5577-6-2.
- ГН 2.1.7.2042-06. Гигиенические нормативы. Ориентировочно-допустимые концентрации (ОДК) химических веществ в почве. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2006. 11 с.
- Шабаев В. П. Микробиологическая азотфиксация и рост растений при внесении ризосферных микроорганизмов и минеральных удобрений // Почвенные процессы и пространственно-временная организация почв. М.: Наука, 2006. С. 195–211.
- Kabata-Pendias A. Trace elements in soils and plants. CRS Press. 2010. 548 p. doi: 10.1201/b10158.
- Шабаев В. П., Волокитин М. П., Остроумов В. Е. Фракционный состав соединений меди в загрязненной металлом почве и его накопление в растениях при внесении ростстимулирующих ризосферных бактерий // Российская сельскохозяйственная наука. 2024. № 3. С. 62–65. doi: 10.31857/S2500262724030121.
- Алексеев Ю. В. Качество растениеводческой продукции. Л.: Колос. 1978. 256 с.
- Сидорова Т. М., Аллахвердян В. В, Асатурова А. М. Роль бактерий рода Pseudomonas и их метаболитов в биоконтроле фитопатогенных микроорганизмов // Агрохимия. 2023. № 5. C. 83–93. doi: 10.31857/S0002188123050071.
Supplementary files
