Determination of adaptive capabilities of various types, forms and varieties of apple trees based on endophytic and epiphytic microbiota indicators

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of the research was to identify the most resistant species, forms and varieties of apple trees based on the developmental specifics of the various types of microbiota. The research was conducted in 2014–2023 at the I. V. Michurin Federal Scientific Center, Michurinsk, Tambov region. The year of planting was 2009 with the planning scheme 6×3 m., the rootstock 54–118. The objects of the research are: Malus robusta species; forms 25–8, 64–143, and 54–118; varieties Korichnoe polosatoe, Orlovim, Iyulskoe Chernenko, and Slava Michurinska. The soil type was leached medium-power black soil with a loamy mechanical composition. Pseudomonas syringae bacteria prevailed in resistant plants: 96.6 % in Malus robusta hybrid apple, 89.3 % in Korichnoe polosatoe variety, and 88.7 % in 25–8 form, which is 9.7 %, 2.4 % and 1.8 % respectively, higher than the average value among the test subjects. In 64–143 form and Slava Michurinska variety, the indicators are lower than the average by 5.5 % and 4.2 % respectively. The yield of mixed microbiota in Malus robusta was not observed (0.0 %). Korichnoe polosatoe variety had an indicator below the average value by 0.7 %, in the form 25–8 by 1.3 %, and in the form 64–143 by 11.4 %, which is 4.5 % higher than the average. The magnitude of negative tests ranged from 3.4 % (Malus robusta) to 6.2 % (Iyulskoe Chernenko), which did not exceed the average value. Samples 64–143, 54–118 and Slava Michurinska had above-average values of 1.0 %, 2.0 % and 4.0 %, respectively. According to the complex of indicators of microbiota yield and the percentage of negative tests, Malus robusta, Korichnoe polosatoe variety and 25–8 form had a high potential for environmental resistance. They were recommended for further breeding for resistance to adverse environmental factors.

Full Text

Restricted Access

About the authors

N. N. Saveleva

Michurin Federal Scientific Center

Author for correspondence.
Email: saveleva_natalya_nic@mail.ru

доктор биологических наук

Russian Federation, 393774, Tambovskaya obl., Michurinsk, ul. Michurina, 30

M. I. Kozaeva

Michurin Federal Scientific Center

Email: saveleva_natalya_nic@mail.ru

кандидат сельскохозяйственных наук

Russian Federation, 393774, Tambovskaya obl., Michurinsk, ul. Michurina, 30

References

  1. Галиева Г. Ш., Галицкая П. Ю., Селивановская С. Ю. Растительный микробиом: происхождение, состав и функции // Ученые записки Казанского университета. Серия Естественные науки 2023. Т. 165. С. 231–262.
  2. Hassani M. A., Duran P., Hacquard S. Microbial interactions within the plant holobiont // Microbiome. 2018. Vol. 6. No 1. Article 58. URL: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168–018–0445–0 (дата обращения: 09.06.2024). doi: 10.1186/s40168-018-0445-0.
  3. Plant–microbiome interactions under a changing world: responses, consequences and perspectives / P. Trivedi, B. D. Batista, K. E. Bazany, et al. // New Phytologist. 2022. Vol. 234. No. 6. P. 1951–1959. doi: 10.1111/nph.18016.
  4. Endophytic fungi as direct plant growth promoters for sustainable agricultural production / J. Poveda, D. Eugui, P. Abril-Urias, et al. // Symbiosis. 2021. V. 85. No. 1. URL: https://link.springer.com/article/10.1007/s13199–021–00789-x (дата обращения: 09.06.2024). doi: 10.1007/s13199-021-00789-x.
  5. Innovative technologies of increasing the efficiency of the breeding process of fruit crops / A. N. Yushkov, N. N. Saveleva, V. V. Chivilev, et al. // Achievements of Science and Technology of AICis. 2019. Vol. 33. No. 2. P. 27–30. doi: 10.24411/0235-2451-2019-10207.
  6. Endophytes Increase Fruit Quality with Higher Soluble Sugar production in Honeycrisp Apple (Malus pumila) / H. Rho, V. Van Epps, S.-H. Kim, et al. // Microorganisms. 2020. Vol. 8. No. 699. https://www.mdpi.com/2076–2607/8/5/699 (дата обращения: 09.06.2024). doi: 10.3390/microorganisms8050699.
  7. Лыжин А. С., Савельева Н. Н. Полиморфизм сортов яблони по локусам моногенной устойчивости к парше // Труды по прикладной ботанике, генетике и селекции. 2020. Т. 181. № 1. С. 64–72. doi: 10.30901/2227-8834-2020-1-64-72.
  8. Обеспечение стабильности устойчивости генотипов яблони к грибу VenturiaInaequalis (Сooke) Wint. / Н. Н. Савельева, А. Н. Юшков, А. С. Земисов и др. // Биосфера. 2022. № 4. С. 384–386. doi. 10.24855/biosfera.v14i4.696.
  9. Induction of abiotic stress tolerance in plants by endophytic microbes / R. Lata, S. Chowdhury, S. K. Gond, et al. // Letters in Applied Microbiology. 2018. Vol. 66. No. 4. Р. 268–276. doi: 10.1111/lam.12855.
  10. Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases / P. Khunnamwong, N. Lertwattanasakul, S. Jindamorakot, et al. // Folia Microbiol (Praha). 2020. Vol. 65. No. 3. Р. 573–590. doi: 10.1007/s12223-019-00764-6.
  11. Endophytic Bacillus and Pseudomonas spp. Modulate Apple Shoot Growth, Cellular Redox Balance, and Protein Expression Under in Vitro Conditions / I. Tamosiune, G. Staniene, P. Haimi, et al. // Frontiers in Plant Science. 2018. Vol. 9. Article 889. URL: https://www.frontiersin.org/journals/plantscience/articles/10.3389/fpls.2018.00889/full (дата обращения: 09.06.2024). doi: 10.3389/fpls.2018.00889.
  12. Самарина Л. С., Маляровская В. И., Рогожина Е. В. и др. Эндофитные микроорганизмы как промоутеры роста растений в культуре invitro // Сельскохозяйственная биология. 2017. Т. 52. № 5. С. 917–927. doi: 10.15389/agrobiology.2017.5.917rus.
  13. Lacava P. T., Azevedo J. L. Endophytic Bacteria: A Biotechnological Potential in Agrobiology System // Maheshwari D., Saraf M., Aeron A. (eds) Bacteria in Agrobiology: Crop Productivity. Berlin, Heidelberg: Springer, 2013. URL: https://link.springer.com/chapter/10.1007/978–3–642–37241–4_1 (дата обращения: 09.06.2024). doi: 10.1007/978-3-642-37241-4_1.
  14. Endophytic Bacteria Isolated from Common Bean (Phaseolus vulgaris) Exhibiting High Variability Showed Antimicrobial Activity and Quorum Sensing Inhibition / R. B. Lopes, L. E. Costa, M. C. Vanetti, et al. // Current Microbiology. 2015. Vol. 71. No. 4. P. 509–516. doi: 10.1007/s00284-015-0879-6.
  15. Natural products from endophytic microorganisms / G. Strobel, B. Daisy, U. Castillo, et al. // Journal of Natural Products. 2004. Vol. 67. P. 257–268. doi: 10.1021/np030397v.
  16. Билай В. И. Методы экспериментальной микологии. К.: Наукова думка, 1982. 552 с.
  17. Билай В. И. Основы общей микологии. К.: Вища школа, 1989. 392 с.
  18. Билай В. И. Микроорганизмы – возбудители болезней растений. К.: Наукова думка, 1988. 550 с.
  19. Harrison J. G., Griffin E. A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? // Environmental Microbiology. 2020. Vol. 22. No. 6. Р. 2107–2123. doi: 10.1111/1462-2920.14968.
  20. Miliute I., Buzaite O., Gelvonauskiene D. Plant growth promoting and antagonistic properties of endophytic bacteria isolated from domestic apple // Zemdirbyste-Agriculture. 2016. Vol. 103. No. 1. P. 77–82. doi: 10.13080/z-a.2016.103.010.
  21. Steven B., Huntley R. B., Zeng Q. The influence of flower anatomy and apple cultivar on the apple flower phytobiome // Phytobiomes Journal. 2018. Vol. 2. No. 3. P. 171–179. doi: 10.1094/PBI0MES-03-18-0015-R.
  22. Isolation and Identification of Potassium-Solubilizing Bacteria from Rhizosphere Soil of Apple Tree/ J. Jiang, X. Peng, Z. Yan, et al. // Chinese Journal of Agrometeorology. 2017. Vol. 38. No. 11. P. 738–748. doi: 10.3969/j.issn.1000-6362.2017.11.006.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microbiota isolated during testing of different varieties: a – bacterial microbiota, variety Korichnoe Polosatoe; b – mixed microbiota, variety Orlovim; c – fungal microbiota, variety Slava Michurinska.

Download (154KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».