Заражение сои в условиях in vivo грибами Diaporthe eres

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Studies were carried out to assess the pathogenicity of the Diaporthe eres species in relation to soybeans using artificial infection methods to clarify the phylogenetic specialization of Diaporthe fungi. The work was carried out in 2021–2023 in the Amur region under conditions of pot experiment. The objects were soybean plants of the early-ripening variety Sentyabrinka and mid-ripening Kitrossa, as well as two strains of microscopic fungi Diaporthe eres. Identification of Diaporthe fungi was carried out by molecular genetic methods and according to cultural and morphological characteristics. Infection of soybean was carried out at different stages development, agar blocks with inoculum were placed on artificially created mechanical damage on the stems. To confirm the penetration of D. eres through natural routes, soybean leaves were inoculated of the studied strains spores suspension. The appearance of disease symptoms and repeated isolation of D. eres from the tissue of an infected plant indicate the manifestation of pathogenicity of the species towards the soybean. Two studied strains of D. eres, previously isolated from apricot shoots, exhibit low aggressiveness towards soybean (the infection rate did not exceed 10 %) as compared with a strain of Diaporthe sp. isolated from a soybean plant (the infection rate was 100 %). The D. eres MF-Pm-4a strain turned out to be more aggressive than D. eres MF-Pm-5a, since the frequency of its repeated isolation from inoculation sites was 20 % higher, and in 10 % of cases it was isolated from non-inoculation sites. Younger soybean plants in the R-1 development phase turned out to be more resistant, they had a longer incubation period, and no visible symptoms of the disease were noted on the 40th day after inoculation. Soybean infection in the R-3 development phase is characterized by a very short incubation period – 15 days. The mid-ripening soybean variety Kitrossa was found to be more resistant than the early-ripening variety Sentyabrinka.

Full Text

Restricted Access

About the authors

L. P. Shumilova

Institute of Geology and Nature Management, Far Eastern branch, Russian Academy of Sciences

Author for correspondence.
Email: Shumilova.85@mail.ru

кандидат биологических наук

Russian Federation, 675000, Blagoveshchensk, per. Relochnyi, 1

E. E. Kabotov

Amur branch of the Botanical Garden-Institute of the Far Eastern Branch, Russian Academy of Sciences

Email: Shumilova.85@mail.ru
Russian Federation, 675000, Blagoveshchensk, Ignat’evskoe shosse, 2-i km

References

  1. Species Fungorum. URL: https://www.speciesfungorum.org/ Names/Names.asp (дата обращения: 15.02.2024).
  2. The current status of species in Diaporthe / A. Dissanayake, A. Phillips, K. D. Hyde, et al. // Mycosphere. 2017. No. 8. P. 1106–1156. doi: 10.5943/mycosphere/8/5/5.
  3. Hulário S., Santos L., Alves A. Diaporthe amygdaly, a species complex or a complex species? // Fungal biology. 2021. Vol. 125. P. 505–518. doi: 10.1016/ j.funbio.2021.01.006.
  4. Gomzhina M. M., Gannibal P. B. Diaporthe species infecting sunflower (Helianthus annuus) in Russia, with the description of two new species // Mycologia. 2022. Vol. 114. No. 3. P. 556–574. doi: 10.1080/00275514.2022.2040285.
  5. Якуткин В. И., Саулич М. И. Географическая распространённость фомопсиса подсолнечника в России и соседних странах в современных агроценозах // Аграрная наука. 2019. Т. 2. С. 83–88. doi: 10.32634/0869-8155-2019-326-2-83-88.
  6. First report of stem canker of Salsola tragus caused by Diaporthe eres in Russia / T. Kolomiets, Z. Mukhina, T. Matveeva, et al. // Plant disease. 2009. Vol. 93. No. 1. Article 110. URL: https://apsjournals.apsnet.org/doi/10.1094/PDIS-93-1-0110B (дата обращения: 06.12.2023). doi: 10.1094/PDIS-93-1-0110B.
  7. Фитопатогенный гриб Phomopsis phaseoli: вирулентость и устойчивость к фунгицидам / Е. М. Чудинова, Т. А. Шкункова, Л. Ю. Кокаева и др. // Защита картофеля. 2019. № 1. С. 14–20.
  8. First report of Phomopsis phaseoli on tomato / S. N. Elansky, L. Y. Kokaeva, A. V. Alexandrova, et al. // Journal of plant pathology. 2020. Vol. 102. No. 1. Р. 236–236. doi: 10.1007/s42161-019-00403-6.
  9. Diversity of endophytic fungi in annual shoots of Prunus mandshurica (Rosaceae) in the south of Amur Region, Russia / E. V. Nekrasov, L. P. Shumilova, M. M. Gomzhina, et al. // Diversity. 2022. No. 14. Article 1124. URL: https://www.mdpi.com/1424-2818/14/12/1124 (дата обращения: 15.02.2024). doi: 10.3390/d14121124.
  10. Грибные заболевания сои на Дальнем Востоке / И. П. Дудченко, А. А. Кузнецова, Г. Н. Дудченко и др. // Фитосанитария. Карантин растений. 2023. № 4 (16). С. 2–16.
  11. Кузьмин А. А. Особенности распространения заболеваний сои на территории Амурской области // Научное обеспечение АПК. 2023. Т. 17. № 2. С. 31–44.
  12. Diaporthe seed decay of soybean [Glycine max (L.) Merr.] is endemic in the United States, but new fungi are involved / K. Petrovic, D. Skaltsas, L. A. Castlebury, et al. // Plant Disease. 2021. Vol. 105. P. 1621–1629. doi: 10.1094/PDIS-03-20-0604-RE.
  13. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops / D. Udayanga, L. A. Castlebury, A. Y. Rossman, et al. // Fungal biology. 2015. Vol. 119. No. 5. P. 383–407. doi: 10.1016/j.funbio.2014.10.009.
  14. The biochemical response of soybean cultivars infected by Diaporthe species complex / K. Petrović, J. Šućur Elez, M. Crnković, et al. // Plants. 2023. Vol. 12. Article 2896. URL: https://www.mdpi.com/2223-7747/12/16/2896 (дата обращения: 26.11.23). doi: 10.3390/plants12162896.
  15. Analysis of the species spectrum of the Diaporthe/Phomopsis complex in European soybean seeds / B. Hosseini, A. El-Hasan, T. Link, et al. // Mycological Progress. 2020. Vol. 19. Р. 455–469. doi: 10.1007/s11557-020-01570-y.
  16. Diaporthe diversity and pathogenicity revealed from a broad survey of soybean stem blight China / X. Zhao, K. Li, S. Zheng, et al. // Plant Disease. 2022. Vol. 106. P. 2892–2903. doi: 10.1094/PDIS-12-21-2785-RE.
  17. Zaw M., Aye S. S., Matsumotos M. Colletotrichum and Diaporthe species associated with soybean stem diseases in Myanmar // of General Plant Pathology. 2020. Vol. 86. P. 114–123. doi: 10.1007/s10327-019-00902-5.
  18. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi / R. R. Gomes, C. Glienke, S. I. R. Videira, et al. // Persoonia. 2013. No. 13. URL: https://www.ingentaconnect.com/content/nhn/pimj/2013/00000031/00000001/art00001 jsessionid = e9aetb1bnpsjt.x-ic-live-03# (дата обращения: 19.01.2024).
  19. Resolving the Diaporthe species occurring on soybean in Croatia / J. M. Santos, K. Vrandecic, J. Cosic, T. Duvnjak, et al. // Persoonia. 2011. Vol. 27. P. 9–19. doi: 10.3767/003158511X603719.
  20. Soybean stem canker caused by Diaporthe caulivora; Pathogen diversity, Colonization process, and plant defense activation / E. Mena, S. Steward, M. Montesano, et al. // Frontiers in Plant Science. 2020. Vol. 10. Article 1733. URL: https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.01733/full (дата обращения: 17.02.2024). doi: 10.3389/fpls.2019.01733.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Morphological characters of Diaporthe sp.-1: a) sporulating pycnidia on the soybean stem; b) colony/reverse on Czapek’s medium, day 21; c) colony/reverse on PDA medium, day 21; d) colony with pycnidia on Czapek’s medium after UV irradiation, day 35 / α-conidia.

Download (249KB)
3. Fig. 2. Appearance of soybean stems after inoculation on the 40th day: a) infected with the Diaporthe sp.-1 strain; b) control; c) infected with D. eres strain MF-Pm-5a; d) infected with D. eres strain MF-Pm-4a.

Download (206KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies