Species composition of septoria blotch of cereal crops and identification of effector genes in populations of Parastagonospora spp. on the territory of Krasnodar and Leningrad regions of the Russian Federation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The studies were conducted in Krasnodar and Leningrad Oblast s in order to clarify the species composition of wheat septoriosis pathogens and further characterize the populations of Parastagonospora nodorum and P. pseudonodorum for the presence of effector genes Tox1, Tox3, ToxA and Tox267 using associated molecular markers to create artificial infection backgrounds to identify sources and donors of leaf spot resistance. The material for the study was represented by samples of affected plants collected in 2023. In the Leningrad Oblast and Krasnodar Krai the species of Zymoseptoria tritici demonstrated predominance. It was detected on all of the examined plant samples (100 % occurrence). P. nodorum and P. pseudonodorum were noticed less frequently in the Leningrad Oblast, the occurrence of P. nodorum was 80 %, while P. pseudonodorum – 60 %. In Krasnodar Krai, the occurrence of P. pseudonodorum comprised 35.29 %, while P. nodorum – 11.76 %. In the present study the primer pair SnTox2DONRF/SnTox2DONRS was applied for the first time to test Russian populations of Parastagonospora spp. for the presence of the Tox267 gene. Molecular screening revealed the ToxA and Tox1 genes in P. nodorum and P. pseudonodorum, while the Tox3 and Tox267 genes were identified only in P. nodorum. Of the 28 P. nodorum isolates studied, the presence of the ToxA gene was found in 29 % (8 isolates from the Krasnodar Krai). The Tox1 gene was noted in 32 % (5 isolates from the Leningrad Oblast and 4 from the Krasnodar Krai). The Tox3 gene was identified in 64 % of 28 (8 isolates from the Krasnodar Krai and 10 from the Leningrad Oblast). The Tox276 gene was found only in the genotype of 8 isolates from the Krasnodar Krai, which amounted to 29 % of those studied. The study also included 87 isolates of P. pseudonodorum. Of these, 5 % had ToxA in the genotype (4 isolates from the Krasnodar Krai) and 23 % Tox1 (17 isolates from Leningrad Oblast; 3 from the Krasnodar Krai).

Texto integral

Acesso é fechado

Sobre autores

Yu. Zeleneva

All-Russian Institute of Plant Protection

Autor responsável pela correspondência
Email: zelenewa@mail.ru

доктор биологических наук

Rússia, 196608, Sankt-Peterburg, Pushkin, sh. Podbel’skogo, 3

I. Ablova

National Center of Grain named after P. P. Lukyanenko

Email: ablova@mail.ru

доктор сельскохозяйственных наук, член-корреспондент РАН

Rússia, 350012, Krasnodar, Tsentral’naya usad’ba

L. Mokhova

National Center of Grain named after P. P. Lukyanenko

Email: ablova@mail.ru

кандидат сельскохозяйственных наук

Rússia, 350012, Krasnodar, Tsentral’naya usad’ba

Bibliografia

  1. Threats to global food security from emerging fungal and oomycete crop pathogens / H. N. Fones, D. P. Bebber, T. M. Chaloner, et al. // Nat Food. 2020. Vol. 1. P. 332–342. doi: 10.1038/s43016-020-0075-0.
  2. Plotnikova L., Sagendykova A., Pozherukova V. The Use of Genetic Material of Tall Wheatgrass to Protect Common Wheat from Septoria Blotch in Western Siberia // Agriculture. 2023. Vol. 13. No. 1. Article 203. URL: https://www.mdpi.com/2077-0472/13/1/203 (дата обращения: 12.03.2024). doi: 10.3390/agriculture13010203.
  3. Характеристика перспективных сортов пшеницы (Triticum aestivum L.), допущенных к возделыванию в Нижневолжском регионе, по устойчивости к возбудителям пиренофорозной и темно-бурой пятнистости / Э. А. Конькова, С. В. Лящева, Ю. В. Зеленева и др. // Сельскохозяйственная биология. 2023. № 58 (5). С. 852–863. doi: 10.15389/agrobiology.2023.5.852rus.
  4. Petit-Houdenot Y., Lebrun M. H., Scalliet G. Understanding plant-pathogen interactions in Septoria tritici blotch infection of cereals // Achieving durable disease resistance in cereals. London, UK: Burleigh Dodds Science Publishing, 2021. P. 263–302. doi: 10.19103/AS.2021.0092.10.
  5. Temporal Changes in Sensitivity of Zymoseptoria tritici Field Populations to Different Fungicidal Modes of Action / T. Birr, M. Hasler, J.-A. Verreet, et al. // Agriculture. 2021. Vol. 11. No. 3. Article 269. URL: https://www.mdpi.com/2077-0472/11/3/269 (дата обращения: 12.03.2024). doi: 10.3390/agriculture11030269.
  6. Fones H., Gurr S. The impact of Septoria tritici blotch disease on wheat: An EU perspective // Fungal Genet Biol. 2015. Vol. 79. P. 3–7. doi: 10.1016/j.fgb.2015.04.004.
  7. Видовой состав возбудителей септориозов пшеницы в европейской части России и идентификация генов-эффекторов SnToxA, SnTox1 и SnTox3 / Ю. В. Зеленева, И. Б. Аблова, В. П. Судникова и др. // Микология и фитопатология. 2022. № 56 (6). С. 441–447. doi: 10.31857/S0026364822060113.
  8. Hyperspectral Non-Imaging Measurements and Perceptron Neural Network for Pre-Harvesting Assessment of Damage Degree Caused by Septoria/Stagonospora Blotch Diseases of Wheat / S. V. Zhelezova, E. V. Pakholkova, V. E. Veller, et al. // Agronomy. 2023. Vol. 13. No. 4. Article 1045. URL: https://www.mdpi.com/2073-4395/13/4/1045 (дата обращения: 12.03.2024). doi: 10.3390/agronomy13041045.
  9. Genome-scale phylogenies reveal relationships among Parastagonospora species infecting domesticated and wild grasses / D. Croll, P. W. Crous, D. Pereira, et al. // Persoonia. 2021. Vol. 46. P. 116–128. doi: 10.3767/persoonia.2021.46.04.
  10. Understanding yield loss and pathogen biology to improve disease management: Septoria nodorum blotch – a case study in wheat / A. Ficke, C. Cowger, G. Bergstrom, et al.// Plant Disease. 2018. Vol. 102. No. 4. P. 696–707. doi: 10.1094/PDIS-09-17-1375-FE.
  11. Genetics of resistance to Septoria nodorum blotch in wheat / A. R. P. Haugrud, Z. Zhang, T. L. Friesen, et al. // Theoretical and Applied Genetics. 2022. Vol. 135. No. 11. P. 3685–3707. doi: 10.1007/s00122-022-04036-9.
  12. The Necrotrophic Pathogen Parastagonospora nodorum Is a Master Manipulator of Wheat Defense / G. K. Kariyawasam, A. C. Nelson, S. J. Williams, et al. // Mol Plant Microbe Interact. 2023. Vol. 36. No. 12. P. 764–773. doi: 10.1094/MPMI-05-23-0067-IRW.
  13. A unique wheat disease resistance‐like gene governs effector‐triggered susceptibility to necrotrophic pathogens / J. D. Faris, Z. Zhang, H. Lu, et al. // Proceedings of the National Academy of Sciences, USA. 2010. Vol. 107. No. 30. P. 13544–13549. doi: 10.1073/pnas.1004090107.
  14. The hijacking of a receptor kinase‐driven pathway by a wheat fungal pathogen leads to disease / G. Shi, Z. Zhang, T. L. Friesen, et al. // Science Advances. 2016. Vol. 2. No. 10. Article e1600822. URL: https://www.science.org/ doi/10.1126/sciadv.1600822 (дата обращения: 12.03.2024). doi: 10.1126/sciadv.1600822.
  15. Friesen T. L., Meinhardt S. W., Faris J. D. The Stagonospora nodorum‐wheat pathosystem involves multiple proteinaceous host‐selective toxins and corresponding host sensitivity genes that interact in an inverse gene‐for‐gene manner // The Plant Journal. 2007. Vol. 51. No. 4. P. 681–692. doi: 10.1111/j.1365-313X.2007.03166.x.
  16. Characterization of the interaction of a novel Stagonospora nodorum host‐selective toxin with a wheat susceptibility gene / T. L. Friesen, Z. Zhang, P. S. Solomon, et al. // Plant physiology. 2008. Vol. 146. No. 2. P. 682–693. doi: 10.1104/pp.107.108761.
  17. A protein kinase‐major sperm protein gene hijacked by a necrotrophic fungal pathogen triggers disease susceptibility in wheat / Z. Zhang, K. L. D. Running, S. Seneviratne, et al. // The Plant Journal. 2021. Vol. 106. No. 3. P. 720–732. doi: 10.1111/tpj.15194.
  18. Identification and characterization of a novel host‐toxin interaction in the wheat‐Stagonospora nodorum pathosystem / N. S. Abeysekara, T. L. Friesen, B. Keller, et al. // Theoretical and Applied Genetics. 2009. Vol. 120. No. 1. P. 117–126. doi: 10.1007/s00122-009-1163-6.
  19. SnTox5‐Snn5: a novel Stagonospora nodorum effector‐wheat gene interaction and its relationship with the SnToxA‐Tsn1 and SnTox3‐Snn3‐B1 interactions / T. L. Friesen, C. Chu, S. S. Xu, et al. // Molecular Plant Pathology. 2012. Vol. 13. No. 9. P. 1101–1109. doi: 10.1111/j.1364-3703.2012.00819.x.
  20. Identification and characterization of the SnTox6‐Snn6 interaction in the Parastagonospora nodorum–wheat pathosystem / Y. Gao, J. D. Faris, Z. Liu, et al.// Molecular Plant–Microbe Interactions. 2015. Vol. 28. No. 5. P. 615–625. doi: 10.1094/MPMI-12-14-0396-R.
  21. The wheat Snn7 gene confers susceptibility on recognition of the Parastagonospora nodorum necrotrophic effector SnTox7 / G. Shi, T. L. Friesen, J. Saini, et al. // The Plant Genome‐US. 2015. Vol. 8. No. 2. URL: https://acsess.onlinelibrary.wiley.com/doi/10.3835/plantgenome2015.02.0007 (дата обращения: 12.03.2024). doi: 10.3835/plantgenome2015.02.0007.
  22. A triple threat: the Parastagonospora nodorum Sn Tox267 effector exploits three distinct host genetic factors to cause disease in wheat / J. K. Richards, G. K. Kariyawasam, S. Seneviratne, et al. // New Phytologist. 2022. Vol. 233. No. 1. P. 427–442. doi: 10.1111/nph.17601.
  23. Friesen T. L., Faris J. D. Characterization of effector–target interactions in necrotrophic pathosystems reveals trends and variation in host manipulation // Annual Review of Phytopathology. 2021. Vol. 59. P. 77–98. doi: 10.1146/annurev-phyto-120320-012807.
  24. Методы оценки устойчивости селекционного материала и сортов пшеницы к септориозу: метод. указ. / Г. В. Пыжикова, А. А. Санина, Л. М. Супрун и др. М.: ВНИИ фитопатологии, 1989. 43 с.
  25. Коломиец Т. М., Пахолкова Е. В., Дубовая Л. П. Отбор исходного материала для создания сортов пшеницы с длительной устойчивостью к септориозу (рекомендации). М.: Печатный город, 2017. 56 с.
  26. Doyle J. J., Doyle J. L. Isolation of plant DNA from fresh tissue // Focus. 1990. Vol. 12. No. 1. P. 13–15.
  27. Andrie R. M., Pandelova I., Ciuffetti L. M. A combination of phenotypic and genotypic characterization strengthens Pyrenophora tritici-repentis race identification // Phytopathology. 2007. Vol. 97. P. 694–701. doi: 10.1094/PHYTO-97-6-0694.
  28. Zeleneva I. V., Sudnikova V. P., Afanasenko O. S. Influence of Agroclimatic Conditions, Life Form, and Host Species on the Species Complex of Wheat Septoria Pathogens // Biology Bulletin. 2021. Vol. 48. No. 10. P. 1806–1812. doi: 10.1134/S1062359021100277.
  29. Зеленева Ю. В., Конькова Э. А. Устойчивость сортов мягкой пшеницы, возделываемых на территории Саратовской области, к возбудителям септориозных пятнистостей // Вавиловский журнал генетики и селекции. 2023. № 27 (6). С. 582–590. doi: 10.18699/VJGB-23-70.
  30. Kovalenko N. M., Zeleneva Yu. V., Sudnikova V. P. Characterization of Pyrenophora tritici-repentis, Parastagonospora nodorum, and Parastagonospora pseudonodorum in the Tambov Oblast for the Presence of Effector Genes // Russian Agricultural Sciences. 2023. Vol. 49. No. 3. P. 285–291. doi: 10.3103/S1068367423030114.
  31. Частота гена ToxА в популяциях Pyrenophora tritici-repentis на Северном Кавказе и северо-западе России / Н. В. Мироненко, О. А. Баранова, Н. М. Коваленко и др. // Микология и фитопатология. 2015. № 49 (5). С. 325–329.
  32. SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual‐function protein that facilitates infection while protecting from wheat‐produced chitinases / Z. Liu, Y. Gao, Y. M. Kim, et al.// New Phytologist. 2016. Vol. 211. No. 3. P. 1052–1064. doi: 10.1111/nph.13959.
  33. Молекулярная идентификация, гены-эффекторы и вирулентность изолятов гриба Parastagonospora nodorum из Алтайского края (Россия) / Ю. В. Зеленева, Ф. Б. Ганнибал, И. А. Казарцев и др. // Микология и фитопатология. 2023. № 57(5). С. 362–371. doi: 10.31857/S0026364823050124.
  34. The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana / M. C. McDonald, D. Ahren, S. Simpfendorfer, et al. // Molecular Plant Pathology. 2018. Vol. 19. No. 2. P. 432–439. doi: 10.1111/mpp.12535.
  35. ToxA–Tsn1 interaction for spot blotch susceptibility in Indian wheat: an example of inverse genefor-gene relationship / S. Navathe, P. S. Yadav, R. Chand, et al. // Plant Disease. 2020. Vol. 104. No. 1. P. 71–81. doi: 10.1094/PDIS-05-19-1066-RE.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Electropherogram of amplification products obtained using primers TA51 F/TA52 R, specific for the ToxA gene in isolates of Parastagonospora spp. from the Krasnodar population. Amplicon size 573 bp. M – DNA marker Gene Ruler 100bp (Thermo Fisher Scientific). Index numbers correspond to the following isolates: 1…6 – 95-23-1…6-P.ps; 7…14 – 86-23-1…8-P.n.; K+ – 29-21-P.n.; K- – 26-21-P.n.

Baixar (54KB)
3. Fig. 2. Electropherogram of amplification products obtained using primers SnTox1cF/SnTox1cR, specific for the Tox1 gene, in isolates of Parastagonospora spp. from the Krasnodar and Leningrad populations. Amplicon size 500 bp. M – DNA marker Gene Ruler 100bp (Thermo Fisher Scientific). Index numbers correspond to the following isolates: 1…12 – 78-23-1…12-P.ps.; 13…17 – 79-23-2…6-P.ps.; 18…22 – 82-23-1…5-P.n.; 23 – 90-23-2-P.ps.; 24…25 – 90–23–4…5-P.ps.; 26 – 86-23-2-P.n.; 27…29 – 86-23-6…8-P.n; K+ – 32-21-P.n.; K- – 29-21-P.n.

Baixar (75KB)
4. Fig. 3. Electropherogram of amplification products obtained using primers SnTox3cF/SnTox3cR, specific for the Tox3 gene in Parastagonospora nodorum isolates from the Krasnodar and Leningrad populations. Amplicon size 600 bp. M – DNA marker Gene Ruler 100bp (Thermo Fisher Scientific). Index numbers correspond to the following isolates: 1…10 – 79-23-1…10-P.n., 11…18 – 86-23-1…8-P.n. K+ – 29-21-P.n.; K- – 26-21-P.n.

Baixar (60KB)
5. Fig. 4. Electropherogram of amplification products obtained using primers SnTox2_DONR_F/ SnTox2_DON_RS, specific for the Tox267 gene in Parastagonospora nodorum isolates from the Krasnodar population. Amplicon size 2000 bp. M – Step Long DNA marker (Biolabmix). Index numbers correspond to the following isolates: 1…8 – 86-23-1…8-P.n.

Baixar (42KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».