Mycotoxins in vegetating corn plants from experimental mono-sowing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of present study was to reveal the mycotoxin contamination of vegetative maize (Zea mays L.) plants during the periods of leaf formation and panicle emergence. Early maturing hybrids of the varieties Krasnodarsky 194 MV, Ladozhsky 175 MV and Competence®, resistant to fungal diseases, were grown in the spring-summer period of 2023 on the experimental field of the Russian State Agrarian University – Moscow Agricultural Academy (Moscow) with sod-podzolic soil and the application of NPK fertilizers 16:16:16. For mycotoxicological analysis, aerial parts of plants were collected weekly from the phase of formation of the 3rd leaf (18 days after sowing. Samples of seedlings, leaves and stems (total number – 172), after drying, were ground in a laboratory mill and extracted with a mixture of acetonitrile and water in a volumetric ratio of 84:16 with a consumption of 10 ml per 1 g of sample. Mycotoxin content was determined in extracts after 10-fold dilution with phosphate-salt buffer solution pH 7.5 by indirect competitive enzyme immunoassay. T-2 toxin, deoxynivalenol, diacetoxiscirpenol, roridin A, sterigmatocystin and PR toxin were absent in the samples. Corn seedlings and leaves contained cyclopiazonic acid (CPA), emodin (EMO), mycophenolic acid (MPA), alternariol (AOL), ergot alkaloids (EA), aflatoxin B1 (AB1) and single samples – zearalenone (ZEN), ochratoxin A (OA) and citrinin (CIT) in concentrations from 16 up to 35 μg/kg. Fumonisins of group B are found only in early seedlings. The permanent contaminant of the stems was MPA, whereas EA and CIT were absent. In the seedlings and leaves of all hybrids, the detection of AOL and EA remained stable during the change of development phases, as did the average concentrations of CPA (about 100 μg/kg), AOL (from 17 to 27 μg/kg), EMO (35–58 μg/kg), MPA (28–41 μg/kg), EA (6–18 μg/kg) and AB1 (2 μg/kg). In the stems of plants in phases 7–9 of leaf and sweeping, variation in cases of detection of CPA, EMO, AOL, AB1 and OA was noted by varieties.

Full Text

Restricted Access

About the authors

G. P. Kononenko

All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology – Branch of Federal Scientific Center Skryabin and Kovalenko All-Russian Research Institute of Experimental Veterinary Russian Academy of Sciences

Author for correspondence.
Email: kononenkogp@mail.ru

доктор биологических наук

Russian Federation, 123022, Moskva, Zvenigorodskoe sh., 5

P. F. Vasilkov

Russian State Agrarian University – Moscow Agricultural Academy named after K. A. Timiryazev

Email: mosina.l.v@yandex.ru

аспирант

Russian Federation, 127550, Moskva, Timiryazevskaya ul., 49

A. A. Burkin

All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology – Branch of Federal Scientific Center Skryabin and Kovalenko All-Russian Research Institute of Experimental Veterinary Russian Academy of Sciences

Email: kononenkogp@mail.ru

кандидат медицинских наук

Russian Federation, 123022, Moskva, Zvenigorodskoe sh., 5

L. V. Mosina

Russian State Agrarian University – Moscow Agricultural Academy named after K. A. Timiryazev

Email: mosina.l.v@yandex.ru

доктор биологических наук

Russian Federation, 127550, Moskva, Timiryazevskaya ul., 49

References

  1. Микотоксикологическое исследование кормового зерна кукурузы (1998–2018 гг.) / Г. П. Кононенко, А. А. Буркин, Е. В. Зотова и др. // Российская сельскохозяйственная наука. 2019. № 3. C. 28–31. doi: 10.31857/S2500-26272019328-31.
  2. Кононенко Г. П., Буркин А. А., Зотова Е. В. Микотоксикологический мониторинг. Сообщение 2. Зерно пшеницы, ячменя, овса, кукурузы // Ветеринария сегодня. 2020. № 2(33). С. 139–145. doi: 10.29326/2304-196X-2020-2-33-139-145.
  3. Silage review: Mycotoxins in silage: occurrence, effects, prevention, and mitigation / I. M. Ogunade, C. Martinez-Tuppia, O.C.M. Queiroz, et al. // Journal of Dairy Science. 2018. Vol. 101(5). P. 4034–4059. doi: 10.3168/jds.2017-13788.
  4. Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out / J. M. Gonzalez-Jartín, V. Ferreiroa, I. Rodríguez-Cañás, et al. // International Journal of Food Microbiology. 2022. Vol. 365. Article 109556. URL: https://www.sciencedirect.com/science/article/pii/S0168160522000277?via%3Dihub (дата обращения 26.01.2024). doi: 10.1016/j.ijfoodmicro.2022.109556.
  5. Czembor E., Stępień Ł., Waśkiewicz A. Effect of environmental factors on Fusarium species and associated mycotoxins in maize grain grown in Poland // PLoS ONE. 2015. Vol. 10(7). Article e0133644. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133644 (дата обращения 26.01.2024). doi: 10.1371/journal.pone.0133644.
  6. Mycotoxin occurrence in maize produced in northern Italy over the years 2009–2011: focus on the role of crop related factors / M. Camardo. Leggieri, T. Bertuzzi, A. Pietry, et al. // Phytopathologia Mediterranea. 2015. Vol. 54. P. 212–221. doi: 10.14601/Phytopathol_Mediterr-14632.
  7. Mycotoxins in Flanders’fields: Occurrence and correlations with Fusarium species in whole-plant harvested maize / J. Vandicke, K. De Visschere, S. Croubels, et al. // Microorganisms. 2019. Vol. 7. Article 571. URL: https://www.mdpi.com/2076–2607/7/11/571 (дата обращения 26.01.2024). doi: 10.3390/microorganisms7110571.
  8. Co-occurrence of regulated and emerging mycotoxins in corn silage: relationships with fermentation quality and bacterial communities / A. Gallo, F. Ghilardelli, A. S. Atzori, et al. // Toxins 2021. Vol. 13. Article 232. URL: https://www.mdpi.com/2072–6651/13/3/232 (дата обращения 26.01.2024). doi: 10.3390/toxins13030232.
  9. Mixtures of mycotoxins, phytoestrogens, and other secondary metabolites in whole-plant corn silages and total mixed rations of dairy farms in central and northern Mexico / F. Penagos-Tabares, M. Sulyok, J.-I. Artavia, et al. // Toxins. 2023. Vol. 15. Article 153. URL: https://www.mdpi.com/2072–6651/15/2/153 (дата обращения 26.01.2024). doi: 10.3390/toxins15020153.
  10. Understanding the biodiversity and biological applications of endophytic fungi: A review / Y. Mishra, A. Singh, A. Batra, et al. // Journal of Microbial & Biochemical Technology. 2014. Vol. S8. Article 004. URL: https://www.walshmedicalmedia.com/open-access/understanding-the-biodiversity-and-biological-applications-of-endophytic-fungi-a-review-1948–5948.S8–004.pdf (дата обращения 26.01.2024). doi: 10.4172/1948-5948.S8-004.
  11. Yadav A. N. Biodiversity and biotechnological applications of endophytic fungi for sustainable agriculture and allied sectors // Acta Scientific Micribiology. 2018. Vol. 1(5). P. 01–05. URL: https://actascientific.com/ASMI/pdf/ASMI-01–0044.pdf (дата обращения 26.01.2024). doi: 10.31080/ASMI.2018.01.0044.
  12. Кононенко Г. П., Зотова Е. В., Буркин А. А. Опыт микотоксикологического обследования зернофуражных культур // Сельскохозяйственная биология. 2021. Т. 56(5). С. 958–967. doi: 10.15389/agrobiology.2021.5.958 rus.
  13. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. / M. Potshangbam, S. I. Devi, D. Sahoo, et al. // Frontiers in Microbiology. 2017. Vol. 8. Article 325. URL: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2017.00325/full (дата обращения 26.01.2024). doi: 10.3389/fmicb.2017.00325.
  14. Fusarium spp. from corn, sorghum, and soybean fields in the central and eastern United States / J. F. Leslie, C.A.S. Pearson, P. E. Nelson, et al. // Phytopathology. 1990. Vol. 80 (4). P. 343–350. doi: 10.1094/phyto-80-343.
  15. Fisher P. J., Petrini O., Lapin-Scott H. M. The distribution of some fungal and bacterial endophytes in maize (Zea mays L.) // New Phytologist. 1992. Vol. 122. P. 299–305. doi: 10.1111/j.1469-8137.1992.tb04234.x.
  16. Characterization of Italian isolates of Fusarium semitectum from alfalfa (Medicago sativa L.) by AFLP analysis, morphology, pathogenicity and toxin production / M. Zaccardelli, V. Balmas, C. Aldomare, et al. // Journal of Phytopathology. 2006. Vol. 164. P. 454–460. doi: 10.1111/j.1439-0434.2006.01128.x.
  17. Toxigenic Alternaria species: impact in cereals worldwide / S. M. Tralamazza, K. C. Piacentini, C.H.T. Iwase, et al. // Current Opinion in Food Science. 2018. Vol. 23. P. 57–63. doi: 10.1016/j.cofc.2018.05.002.
  18. Frisvad J.C., Samson R. A. Polyphasic taxonomy of Penicillium subgenus Penicillium, A guide to identification of food and air-borne terverticillate Penicilla and their mycotoxins // Studies in Mycology. 2004. Vol. 49. P. 1–174.
  19. Bioactive polyketides and alkaloids from Penicillium citrinum, a fungal endophyte isolated from Ocimum tenuiflorum / D. Lai, H. Broetz-Oesterhelt, W.E.G. Mueller, et al. // Fitoterapia. 2013. Vol. 91. P. 100–106. doi: 10.1016/j.fitote.2013.08.017.
  20. Endophytic fungus strain ZD6 isolated from the stem of Bruguiera gymnorrhiza and antibacterial activity of its metabolites / M. Li, M. Chang, Q. Zhang, et al. // Junwu Xuebao (Mycosystema). 2010. Vol. 29. P. 739–745.
  21. Penicillium species endophytic in coffee plants and ochratoxin A production / F. E. Vega, F. Posada, S. W. Peterson, et al. // Mycologia. 2006. Vol. 98(1). P. 31–42. doi: 10.3852/mycologia.98.1.31.
  22. Natural product diversity from the endophytic fungi of the genus Aspergillus / S. S. El-hawary, A. S. Moawad, H. S. Bahr, et al. // RSC Advances. 2020. Vol. 10. P. 22058–22079. doi: 10.1039/d0ra04290k.
  23. Cytotoxic secondary metabolites from the endophytic fungus Aspergillus versicolor KU258497 / S. S. Ebada., M. El-Neketi, W. Ebrahim, et al. // Phytochemistry Letters. 2018. Vol. 24. P. 88–93. doi: 10.1016/j.phytol.2018.01.010.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies