Methodology of operational monitoring of crop status based on the internet of things technologies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Digital technologies are being actively introduced into Russian agriculture at different levels of information analysis (from the plot to the field, farm, region and country as a whole). In crop production at the field level, one of the most important values is the introduction of systems for accurate, rapid and automated monitoring of crop condition, the success of which largely predetermines the effectiveness of precision farming systems. The aim of the research is to develop a methodology for using Internet of Things technologies for non-contact monitoring of crops and related meteorological and soil-hydrological parameters. A wireless network is used as the basis for monitoring, which includes sensor nodes equipped with sensors for meteorological parameters, soil moisture and cameras equipped with a fish-eye lens. Sensor nodes equipped with sensors and cameras are placed in the field according to a specially designed scheme, individualized for each field. Development of the scheme of sensor placement on the field is based on the analysis of long-term archives of satellite data of high spatial resolution and refined soil maps of large scale. Information from sensors is wirelessly transmitted to the network coordinator (or base station) and then to the remote server in the database, and there it is automatically analyzed and interpolated for the whole field. Based on the analysis, recommendations for correction of agrotechnology of crop cultivation are formed. Elements of the methodology were tested on a number of test fields and showed high efficiency. Implementation of the proposed approaches can serve as an alternative to the use of remote sensing data for crop monitoring in offline precision farming systems.

About the authors

I. Yu. Savin

Federal Research Center «Dokuchaev Soil Science Institute»;Peoples’ Friendship University of Russia

Email: savin_iyu@esoil.ru
119017, Moskva, Pyzhevskii per., 7, str. 2b;117198, Moskva, ul. Miklukho-Maklaya, 6

Yu. I. Blokhin

Agrophysical Research Institute

195220, St. Petersburg, Grazhdansky pr., 14

A. V. Chinilin

Federal Research Center �Dokuchaev Soil Science Institute�

119017, Moskva, Pyzhevskii per., 7, str. 2b

References

  1. Soma T., Nuckchady B. Communicating the Benefits and Risks of Digital Agriculture Technologies: Perspectives on the Future of Digital Agricultural Education and Training // Front. Commun. 2021. 6:762201. URL: https://www.frontiersin.org/articles/10.3389/fcomm.2021.762201/full (дата обращения: 27.07.2023). doi: 10.3389/fcomm.2021.762201.
  2. Priorities for Science to Overcome Hurdles Thwarting the Full Promise of the 'digital Agriculture' Revolution / M. Shepherd, J. A. Turner, B. Small, et al. // J. Sci. Food Agric. 2020. Vol. 100. No. 14. P. 5083-5092. doi: 10.1002/jsfa.9346.
  3. Цифровое земледелие / А. Л. Иванов, И. С. Козубенко, И. Ю. Савин и др. // Вестник российской сельскохозяйственной науки. 2018. № 5. С. 4-9.
  4. Van der Burg S., Bogaardt M.-J., Wolfert S. Ethics of Smart Farming: Current Questions and Directions for Responsible Innovation towards the Future // NJAS - Wageningen J. Life Sci. 2019. 90-91, 100289. URL: https://www.tandfonline.com/doi/full/10.1016/j.njas.2019.01.001 (дата обращения: 27.07.2023). doi: 10.1016/j.njas.2019.01.001.
  5. Sung J. The Fourth Industrial Revolution and Precision Agriculture // InTech. 2018. URL: https://www.intechopen.com/chapters/57703 (дата обращения: 27.07.2023). doi: 10.5772/intechopen.71582.
  6. Точное земледелие как один из аспектов цифровизации сельского хозяйства / С. В. Шайтура, А. В. Коломейцев, И. И. Позняк и др. // Вестник Курской государственной сельскохозяйственной академии. 2022. № 3. С. 161-166.
  7. Tendulkar A. Introduction to Precision Agriculture: Overview, Concepts, World Interest, Policy, and Economics // Precision Agriculture Technologies for Food Security and Sustainability/ edited by Sherine M. Abd El-Kader and Basma M. Mohammad El-Basioni, IGI Global, 2021. P. 1-22. URL: https://www.researchgate.net/publication/348122259_Introduction_to_Precision_Agriculture_Overview_Concepts_World_Interest_Policy_and_Economics (дата обращения: 27.07.2023). doi: 10.4018/978-1-7998-5000-7.ch001.
  8. Якушев В. В. Точное земледелие: теория и практика. СПб.: ФГБНУ АФИ, 2016. 364 с.
  9. Савин И. Ю., Блохин Ю. И. Об оптимизации размещения сети сенсорных узлов БСС, включенных в интернет вещей на пахотных угодьях // Бюллетень Почвенного института имени В. В. Докучаева. 2022. № 110. С. 22-50. doi: 10.19047/0136-1694-2022-110-22-50.
  10. Monitoring Soil and Ambient Parameters in the IoT Precision Agriculture Scenario: An Original Modeling Approach Dedicated to Low-Cost Soil Water Content Sensors / P. Placidi, R. Morbidelli, D. Fortunati, et al. // Sensors. 2021. Vol. 21. P. 5110. URL: https://www.mdpi.com/1424-8220/21/15/5110 (дата обращения: 27.07.2023). doi: 10.3390/s21155110.
  11. Ravesa A., Shabir A. S. Precision agriculture using IoT data analytics and machine learning // Journal of King Saud University - Computer and Information Sciences. 2022. Vol. 34. No. 8. Part B. P. 5602-5618. doi: 10.1016/j.jksuci.2021.05.013.
  12. Современные решения для формирования опорной информации с целью повышения точности определения агрофизических свойств почвы по спутниковым данным / Ю. И. Блохин, В. В. Якушев, С. Ю. Блохина и др. // Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 4. С. 164-178. doi: 10.21046/2070-7401-2020-17-4-164-178.
  13. State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review / D. Radočaj, A. Šiljeg, R. Marinović, et al. // Agriculture. 2023.Vol. 13. No. 3. P. 707. URL: https://www.mdpi.com/2077-0472/13/3/707 (дата обращения: 27.07.2023). doi: 10.3390/agriculture13030707.
  14. Selective spraying of grapevines for disease control using a modular agricultural robot / Oberti R., Marchi M., Tirelli P., et al. // Biosyst. Eng. 2016. Vol. 146. P. 203-215. doi: 10.1016/j.biosystemseng.2015.12.004.
  15. Kim S., Lee M., Shin C. IoT-Based Strawberry Disease Prediction System for Smart Farming // Sensors. 2018. Vol. 18. No. 11. P. 4051. URL: https://www.mdpi.com/1424-8220/18/11/4051 (дата обращения: 27.07.2023). doi: 10.3390/s18114051.
  16. Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt / P. P. Jayaraman, A. Yavari, D. Georgakopoulos, et al. // Sensors. 2016. Vol. 16. No. 11. P. 1884. URL: https://www.mdpi.com/1424-8220/16/11/1884 (дата обращения: 27.07.2023). doi: 10.3390/s16111884.
  17. Can the plant area index of a submerged vegetation canopy be estimated using digital hemispherical photography? / D. Zhao, M. Lv, P. Wang, et al. // Agricultural and Forest Meteorology. 2014. Vol. 192.P. 69-77.
  18. Methods for in situ leaf area index measurement, part II: from gap fraction to leaf area index: retrieval methods and sampling strategies / M. Weiss, F. Baret, G. J. Smith, et al. // Agric. For. Meteorol. 2004. Vol. 121. P. 17-53.
  19. Guo Y. Wearable sensors to monitor plant health // Nat. Food. 2023. Vol. 4. P. 350. URL: https://www.nature.com/articles/s43016-023-00764-3 (дата обращения: 27.07.2023). doi: 10.1038/s43016-023-00764-3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».