Characterization of Pyrenophora tritici-repentis, Parastagonospora nodorum and Parastagonospora pseudonodorum populations based on the presence of effector genes in the Tambov Oblast territory

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of the research is to characterise the populations of Pyrenophora tritici-repentis, Parastagonospora nodorum and Parastagonospora pseudonodorum in the territory of the Tambov region based on the presence/absence of the Tox1, Tox3, ToxA and ToxB effector genes using their associated molecular markers. Infectious samples were obtained in 2022 from the leaves of spring and winter wheat. The infectious site is located in the northeastern part of the Central Black Soil region. The predecessor is represented by the pure steam. The species of P. nodorum and P. pseudonodorum were observed on spring wheat cultivars in the end of their vegetation period. The fungus of P. tritici-repentis affected the cultivars of both winter and spring wheat. Using molecular markers, the genes encoding NEs were identified in 68 P. tritici-repentis isolates obtained from 19 winter wheat cultivars, 100 P. nodorum isolates, taken from 10 spring wheat cultivars, and 70 P. pseudonodorum isolates, provided by 7 spring wheat cultivars. Among the P. nodorum isolates studied, there were both single genes Tox1, Tox3, and ToxA, as well as combinations of two genes in one genotype. The presence of the ToxA gene was not found in the genotype of P. pseudonodorum isolates. Fungal isolates with genotypes carrying Tox1 and/or Tox3 have been identified. The ToxB gene was not found in the examined population of P. tritici-repentis, while ToxA was widely represented. The occurrence of genes in the P. nodorum population was as follows: ToxA, 30%; Tox1, 20%; Tox3, 30%; in the population of P. pseudonodorum it was: Tox1 - 57.1%, Tox3 - 30 %; in the population of P. tritici-repentis the ratio was represented by the following figures: ToxA - 76.5%. P. tritici-repentis, P. nodorum, and P. pseudonodorum strains, characterized by the presence of effector genes, will be used to create artificial infectious backgrounds to identify sources and donors of leaf spot resistance.

About the authors

N. M Kovalenko

All-Russian Institute of Plant Protection

Email: info@vizr.spb.ru
196608, Sankt-Peterburg, Pushkin, sh. Podbel'skogo, 3

Yu. V Zeleneva

All-Russian Institute of Plant Protection

196608, Sankt-Peterburg, Pushkin, sh. Podbel'skogo, 3

V. P Sudnikova

Central Russian branch of Michurin Federal Scientific Center

Email: tmbsnifs@mail.ru
392553, Tambovskaya obl., Tambovskii r-n, pos. Novaya Zhizn', ul. Molodezhnaya

References

  1. Обзор фитосанитарного состояния посевов сельскохозяйственных культур в Тамбовской области в 2021 году и прогноз развития вредных организмов в 2022 году / сост. Н. П. Сдвижков, О. И. Илларионова, М. В. Савенкова и др. Тамбов: ООО "Издательский дом "Тамбов", 2022. 134 с.
  2. Genome-scale phylogenies reveal relationships among Parastagonospora species infecting domesticated and wild grasses / D. Croll, P. W. Crous, D. Pereira et al. // Persoonia. 2021. Vol. 46. P. 116-128. doi: 10.3767/ persoonia.2021.46.04.
  3. Видовой состав возбудителей септориозов пшеницы в европейской части России и идентификация генов-эффекторов SnToxA, SnTox1 и SnTox3 / Ю. В. Зеленева, И. Б. Аблова, В. П. Судникова и др. // Микология и фитопатология. 2022. Т. 56. № 6. С. 441-447. doi: 10.31857/S0026364822060113.
  4. Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies / H.T.T. Phan, K. Rybak, S. Bertazzoni et al. // Theor Appl Genet. 2018. Vol. 131, P. 1223-1238. doi: 10.1007/s00122-018-3073-y.
  5. Pyrenophora tritici-repentis: a plant pathogenic fungus with global impact. In: Genomics of plant-associated fungi: monocot pathogens / Ciuffetti L. M., Manning V. A., Pandelova I. et al. / Dean RA, Lichens-Park A, Kole C (eds). Berlin: Springer, 2014. P. URL: https://link.springer.com/chapter/10.1007/978-3-662-44053-7_1(дата обращения: 03.03.2023). doi: 10.1007/978-3- 662-44053-7_1.
  6. Impact of crop rotation and soil tillage on the severity of winter wheat leaf blotches / B. Bankina, G. Bimsteine, I. Arhipova et al. // Rural Sustain Res. 2021. Vol. 45. No.340. P. 21-27. doi: org/10.2478/plua-2021-0004.
  7. Ким Ю. С., Волкова Г. В. Желтая пятнистость листьев пшеницы: распространение, вредоносность, расовый состав (обзор) // Вестник Ульяновской государственной сельскохозяйственной академии. 2020. № 2 (50). С. 105-116. doi: 10.18286/1816-4501-2020-2-105-116.
  8. Михайлова Л. А., Мироненко Н. В., Коваленко Н. М. Желтая пятнистость пшеницы. Методические указания по изучению возбудителя желтой пятнистости Pyrenophora tritici- repentis и устойчивости сортов., СПб: ВИЗР, 2012. 64 с.
  9. Vistas of tan spot research / E. D. de Wolf, R. J. Effertz, S. Ali, et al. // Can J Plant Pathol. 1998. Vol. 20. No. 4. P. 349-370. doi: 10.1080/07060669809500404.
  10. Ali S., Francl L. J. Population race structure of Pyrenophora tritici-repentis. Prevalent on wheat and noncereal grasses in the great plains // Plant Dis. 2003. Vol. 87. No. 4. P. 418-422. doi: 10.1094/ pdis.2003.87.4.418.
  11. Ciuffetti L. M., Tuori R. P., Gaventa J. M. A single gene encodes a selective toxin causal to the development of tan spot of wheat // Plant Cell. 1997. Vol. 9. Np. 2. P. 135-144. doi: 10.1105/tpc.9.2.135.
  12. Strelkov S. E., Lamari L., Ballance G. M. Characterization of a host-specific protein toxin (Ptr ToxB) from Pyrenophora tritici-repentis // Mol Plant-Microbe Interact. 1999. Vol. 12. No. 8. P. 728-732. doi: 10.1094/ MPMI.1999.12.8.728.
  13. Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitivity locus in wheat / R. J. Effertz, S. W. Meinhardt, J. Anderson, et al. // Phytopathology. 2002. Vol. 92. No. 5. P. 527-533. doi: 10.1094/ PHYTO.2002.92.5.527.
  14. Phenotypical and genotypical characterization of Pyrenophora tritici-repentis races in Brazil / V. V. Bertagnolli, J. R. Ferreira, Z. Liu, et al. // Eur J Plant Pathol. 2019. Vol. 154. No. 4. P. 995-1007. doi: 10.1016/j.fgb.2017.10.004.
  15. Characterization of the ToxB gene from Pyrenophora tritici-repentis /j. P. Martinez, S. A. Ottum, S. Ali, et al. // Mol Plant-Microbe Interact. 2001. Vol. 14. No. 5. P. 675-677. doi: 10.1094/MPMI.2001.14.5.675.
  16. Martinez J. P., Oesch N. W., Ciuffetti L. M. Characterizati on of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis // Mol. Plant-Microbe Interact. 2004. Vol. 17. P. 467-474. doi: 10.1094/MPMI.2004.17.5.467.
  17. Kim Y. M., Strelkov S. Heterologous expression and activity of Ptr ToxB from virulent and avirulent isolates of Pyrenophora tritici-repentis // Can J Plant Pathol. 2007. Vol. 29. No. 3. P. 232-242. doi: 10.1080/07060660709507465.
  18. Duba A., Goriewa-Duba K., Wachowska U. A review of the interactions between wheat and wheat pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum // Int. J. Mol. Sci. 2018. Vol. Article 1138. URL: https://www.mdpi.com/1422-0067/19/4/1138. (дата обращения: 03.03.2023). doi: 10.3390/ijms19041138.
  19. A triple threat: the Parastagonospora nodorum SnTox267 effector exploits three distinct host genetic factors to cause disease in wheat / Richards J. K., Kariyawasam G. K., Seneviratne S., et al. // New Phytol. 2022. Vol. 233. No. 1. P. 427-442. doi: 10.1111/ nph.17601.
  20. Friesen T. L., Faris J. D. Characterization of Effector- Target Interactions in Necrotrophic Pathosystems Reveals Trends and Variation in Host Manipulation // Annu Rev Phytopathol. 2021. Vol. 59. P. 77-98. doi: 10.1146/annurev-phyto-120320-012807.
  21. Diversity in morphotypes and necrotrophic effectors (Nes) of Pyrenophora tritici-repentis strains in Latvia and Belarus /j. Kaņeps, I. Moroсko-Biсevska, B. Bankina, et al. // Cereal research communications. 2022. Vol. 50. P. 1037-1043. doi: 10.1007/s42976-022-00255-4.
  22. Коломиец Т. М., Пахолкова Е. В. Дубовая Л. П. Отбор исходного материала для создания сортов пшеницы с длительной устойчивостью к септориозу. М.: Печатный город, 2017. 56 с.
  23. Doyle J. J., Doyle J. L. Isolation of plant DNA from fresh tissue // Focus. 1990. Vol. 12. P. 13-15.
  24. Identification and characterization of the SnTox6-Snn6 interaction in the Parastagonospora nodorum - wheat pathosystem / Y. Gao, J. D. Faris, Z. Liu, et al. // Mol. Plant Microbe Interact. 2015. Vol. 28. P. 615-625. doi: 10.1094/MPMI-12-14-0396-R.
  25. Andrie R. M., Pandelova I., Ciuffetti L. M. A combination of phenotypic and genotypic characterization strengthens Pyrenophora tritici-repentis race identification // Phytopathology. 2007. Vol. 97. P. 694-701. doi: 10.1094/PHYTO-97-6-0694.
  26. Ubiquity of ToxA and absence of ToxB in Australian populations of Pyrenophora tritici-repentis / E. A. Antoni, K. Rybak, M. P. Tucker et al. // Australasian Plant Pathology. 2010. P. 39. P. 63-68. doi: 10.1071/AP09056.
  27. Мироненко Н. В., Орина А. С., Коваленко Н. М. Генетический полиморфизм ядер штаммов Pyrenophora tritici-repentis по генам-эффекторам ToxA и ToxB // Генетика. 2021. Т. 57. № 5. С. 528-535. doi: 10.31857/S0016675821040093.
  28. Частота гена ToxА в популяциях Pyrenophora tritici- repentis на Северном Кавказе и северо-западе России / Н. В. Мироненко, О. А. Баранова, Н. М. Коваленко и др. // Микология и фитопатология. 2015. Т. 49.№ 5. С. 325-329.
  29. Мироненко Н. В., Коваленко Н. М., Баранова О. А. Характеристика географически отдаленных популяций Pyrenophora tritici- repentis по вирулентности и генам токсинообразования ToxA и ToxB // Вестник защиты растений. 2019. № 1 (99).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies