Genetic stability of lavender (Lavandula angustifolia Mill.) plants obtained during long-term clonal micropropagation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of the study was to evaluate the genetic stability of lavender cultivars during long-term clonal micropropagation using RAPD and ISSR markers. The material for the study was three lavender (Lavandula angustifolia Mill.) cultivars of the Crimean breeding - ‘Vdala', ‘Sineva', ‘Stepnaya'. The biological objects were the original donor plants (grown under controlled conditions), as well as microshoots after 6 and 16 subcultivations during in vitro propagation. We used two RAPD (OPA 10, OPO 13) and four ISSR primers (HB 13, HB 15, ISSR 1, ISSR 2, ISSR 3). It was not found significant differences on the number and length of shoots, the number of nodes on the shoot and the multiplication index after 6 and 16 subcultivations for all cultivars. According to the morphology, the microshoots of the three studied cultivars after different periods cultivation also did not differ from each other. Using 7 markers, we identified 62 loci. All primers used in the work were polymorphic (41.7...88.9%), and the amplification products reliably identified lavender cultivars. The length of the amplified fragments varied from 378 to 2177 base pairs. The microshoots, obtained using clonal micropropagation after 6 and 16 subcultivations, were identical in genetic profile to the original lavender cultivars. As a result, the possibility of long-term (at least 16 subcultivations) micropropagation of lavender was shown, while maintaining their genetic stability.

About the authors

S. S Babanina

Crimea Research Agricultural Institute

Email: svetlana.babanina@bk.ru
295453, Respublika Krym, Simferopol', ul. Kievskaya, 150

N. A Yegorova

Crimea Research Agricultural Institute

295453, Respublika Krym, Simferopol', ul. Kievskaya, 150

I. V Stavtseva

Crimea Research Agricultural Institute

295453, Respublika Krym, Simferopol', ul. Kievskaya, 150

S. F Abdurashitov

Crimea Research Agricultural Institute

295453, Respublika Krym, Simferopol', ul. Kievskaya, 150

References

  1. Эфирные масла и их качество / В. С. Паштецкий, Л. А. Тимашева, О. А. Пехова и др. Симферополь: ИТ "АРИАЛ", 2021. 212 с.
  2. The chromosome-based lavender genome provides new insights into Lamiaceae evolution and terpenoid biosynthesis /j. Li, Y. Wang, Y. Dong, et al. // Horticulture Research. 2021. Vol. 8. Article 53. URL: https://academic.oup.com/hr/article/doi/10.1038/s41438-021-00490-6/6446685 (дата обрашения: 1.06.2022). doi: 10.1038/s41438-021-00490-6.
  3. Hamza A., El-Kafie O. A., Kasem M. Direct micropropagation of english lavender (Lavandula angustifolia Munstead) plant // Journal of Plant Production. 2011. Vol. 2. No. 1. P. 81-96. doi: 10.21608/jpp.2011.85464.
  4. Morphogenetic, Physiological, and Biochemical Features of Lavandula angustifolia at Long-Term Micropropagation In Vitro / N. A. Yegorova, I. V. Mitrofanova, V. A. Brailko, et al. // Russian Journal of Plant Physiology. 2019. Vol. 66. No. 2. P. 326-334. doi: 10.1134/S1021443719010060.
  5. Rapid and efficient protocol for clonal propagation of phenolic-rich Lavandula multifida / M. Zuzarte, A. M. Dinis, L. Salgueiro, et al. //j. of Agricultural Science. 2015. Vol. 7. No. 3. P. 8-17. doi: 10.5539/jas.v7n3p8.
  6. Micropropagation of lavender: a protocol for production of plantlets //j. Koefender, C. E. Manfio, J. N. Camera, et al. // Horticultura Brasileira. 2021. No. 39. P. 404-410. doi: 10.1590/s0102-0536-20210409.
  7. Some morphophysiological features of lavander cultivar micropropagated in vitro by meristem culture / N. Yegorova, V. Brailko, I. Stavtzeva, et al. // Agriculture & Forestry. 2018. Vol. 64. No. 1. P. 105-111. doi: 10.17707/AgricultForest.64.1.13.
  8. Егорова Н. А., Ставцева И. В. Разработка биотехнологических приемов микроразмножения in vitro для Lavandula angustifolia Mill. // Труды Кубанского государственного аграрного университета. 2015. № 54. С. 138-142.
  9. Егорова Н. А. Биотехнология эфиромасличных растений: создание новых форм и микроразмножение in vitro: монография. Симферополь: Издательский дом "Автограф" (Екатеринбург), 2021. 315 с.
  10. Micropropagation of Lavandula angustifolia Mill. ‘Record' and ‘Belyanka' / I. V. Mitrofanova, S. N. Chirkov, N. P. Lesnikova-Sedoshenko, et al. // Acta Hortic. 2017. Vol. 1187. P. 37-42. doi: 10.17660/ActaHortic.2017.1187.4.
  11. Kara N., Baydar H. Effects of different explant sources on micropropagation in Lavender (Lavandula sp.) // Journal of Essential Oil Bearing Plants. 2012. Vol. 15. No. 2. P. 250-255.
  12. Применение биотехнологических методов в оздоровлении растений и размножении безвирусного посадочного материала перспективных цветочно-декоративных культур / О. В. Митрофанова, И. В. Митрофанова, Н. П. Лесникова-Седошенко и др. // Сборник научных трудов ГНБС. 2014. Т. 138. С. 5-56.
  13. Cardoso J.C., Gerald L.T.S., Teixeira da Silva J.A. Micropropagation in the Twenty-First Century. In: Plant cell culture protocols (4th edition) / eds.: V.M. Loyola-Vargas, N. Ochoa-Alejo. New York: Humana Press, 2018. P. 17-46.
  14. Teixeira da Silva J. A., Bolibok H., Rakoczy-Trojanowska M. Molecular markers in micropropagation, tissue culture and in vitro plant research, Genes // Genomes and Genomics. 2007. Vol. 1. No. 1. P. 66-72.
  15. Butiuc-Keul A., Farkas A., Cristea V. Genetic Stability Assessment of in Vitro Plants by Molecular Markers // Studia universitatis babeş-bolyai biologia. 2016. Vol. LXI. No. 1. P. 107-114.
  16. Venkatachalam L., Sreedhar RV, Bhagyalakshmi N. Molecular analysis of genetic stability in long-term micropropagated shoots of banana using RAPD and ISSR markers // Electronic Journal of Biotechnology. 2007. Vol. 10 No. 1. P. 106-113. doi: 10.4067/S0717-34582007000100010.
  17. Технологии выращивания высококачественного посадочного материала плодовых и ягодных растений / Ю. В. Трунов, Ф. В. Соловьев, И. И. Козлова и др. Мичуринск: ООО "БИС", 2018. 246 с.
  18. Assessment of genetic stability of in vitro grown Dictyospermum ovalifolium / M. Chandrika, S. Thoyajaksha, R Ravishankar, et al. // Biologia Plantarum. 2008. Vol. 52. No. 4. P. 735-739.
  19. Influence of ventilation closure, gelling agent and explant type on shoot bud proliferation and hyperhydricity in Scrophularia yoshimurae - a medicinal plant / H.-S. Tsay, C.-Y. Lee, D. C. Agrawal, et al. // In Vitro Cellular and Developmental Biology-Plant. 2006. Vol. 42. No. 5. P. 445-449.
  20. Parab A. R., Lynn C. B., Subramaniam S. Assessment of genetic stability on in vitro and ex vitro plants of Ficus carica var. black jack using ISSR and DAMD markers // Mol Biol Rep. 2021. Vol. 48. No. 11. P. 7223-7231. doi: 10.1007/s11033-021-06714-1.
  21. Genetic instability of sugarcane plants derived from meristem cultures / M. I. Zucchi, H. Arizono, V. A. Morais, et al. // Genetics and Molecular Biology. 2002. Vol. 25. No. 1. P. 91-96.
  22. Debnath S. C. Molecular approaches for monitoring clonal fidelity and epigenetic variation in in vitro-derived strawberry plants // Acta Hortic. 2017. Vol. 115. P. 683-687.
  23. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars / A. H. Naing, S. H. Kim, M. Y. Chung, et al. // Plant Methods. 2019. Vol. 15. No. 36. URL: https://plantmethods.biomedcentral.com/articles/10.1186/s13007-019-0421-0 (дата обращения: 1.04.2022). doi: 10.1186/s13007-019-0421-0.
  24. Chograni H., Zaouali Y., Boussaid M. Genetic diversity of natural Tunisian Lavandula multifida L. (Lamiaceae) populations assessed by allozymes and random amplification of polymorphic DNA (RAPD) // African Journal of Biotechnology. 2013. Vol. 12. No. 7. P. 648-657. doi: 10.5897/AJB12.1748.
  25. Ahmed S. M., Al-Sodany Y. Authentication of Ecological, Biochemical and Molecular Features for Some Lamiaceae Species from Saudi Arabia // Egypt. J. Bot. 2019. Vol. 59. No. 3. P. 581-594. doi: 10.21608/ejbo.2019.6144.1246.
  26. Peschke V. M., Phillips R. L., Gengenbach B. G. Genetic and molecular analysis of tissue-culture-derived Ac elements // Theor. Appl. Genet. 1991. Vol. 82. P. 121-129.
  27. Doyle J. J. Isolation of plant DNA from fresh tissue // Focus. 1990. Vol. 12. P. 13-15.
  28. Загорская М. С. Некоторые аспекты выделения геномной днк из растений лаванды разного происхождения // Современное состояние, проблемы и перспективы развития аграрной науки: материалы V международной научно-практической конференции. Симферополь: Общество с ограниченной ответственностью "Издательство Типография "Ариал", 2020. С. 177-179. doi: 10.33952/2542-0720-2020-5-9-10-90.
  29. An efficient DNA isolation method for tropical plants / Q. X. Huang, X. C. Wang, H. Kong, et al. // African Journal of Biotechnology. 2013. Vol. 12. No. 19. P. 2727-2732.
  30. Gadouche L., Saadi A., Zidane A. Molecular polymorphism in dentate lavender from littoral Algerian // Journal Genetics and Biodiversity. 2019. Vol. 3. No. 2. P. 40-48.
  31. Current protocols in molecular biology / P. M. Ausubel, R. Brent, R. E. Kingston, et al. New York: Wilev, 1997. 630 p.
  32. Al Khateeb W., Kanaan R., El-Elimat T. In vitro Propagation, Genetic Stability, and Secondary Metabolite Analysis of Wild Lavender (Lavandula coronopifolia Poir.) /// Hortic. Environ. Biotechnol. 2017. Vol. 58. No. 4. P. 393-405. doi: 10.1007/s13580-017-0342-7.
  33. In vitro propagation, genetic and phytochemical assessment of Thymus persicus - a medicinally important source of pentacyclic triterpenoids / Z. Bakhtiar, M. H. Mirjalili, A. Sonboli, et al. // Biologia. 2014. Vol. 69. P. 594-603. doi: 10.2478/s11756-014-0346-z.
  34. Ex situ preservation for some endemic and rare medicinal plants in Taif, KSA / Attia O. Attia, El Dessoky S. Dessoky, Yassin M. Al-Sodany, et al. // Biotechnology & Biotechnological Equipment. 2017. Vol. 31. No. 5. P. 912-920. doi: 10.1080 /13102818.2017.1356690.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies