Cytogenetic and molecular studies of different species of raccoon dog (Nyctereutes procyonoides)
- Authors: Safronova L.D.1, Sycheva V.B.1, Sergeev E.G.2
-
Affiliations:
- Severtsov Institute of Ecology and Evolution of the RAS
- V.A. Afanasyev Scientific Research Institute of Fur Farming and Rabbit Breeding of the Russian Academy of Sciences
- Issue: No 2 (2025)
- Pages: 90-95
- Section: Zootechnics
- URL: https://journals.rcsi.science/2500-2082/article/view/293997
- DOI: https://doi.org/10.31857/S2500208225020181
- EDN: https://elibrary.ru/HVPICO
- ID: 293997
Cite item
Abstract
The raccoon dog (Nyctereutes procyonoides) is recognized as the oldest representative of the family Canidae and represents a distinct branch on the phylogenetic tree. The raccoon dog karyotype contains many segments homologous to chromosomes from the predicted ancestral karyotype for the order. Carnivora were identified. Thus, it was suggested that the raccoon dog has the most primitive karyotype in the family Canidae. Two subspecies are recognized: the Chinese raccoon dog Nyctereutes procyonoi-des procyonoides (N.p.p.) and the Japanese raccoon dog Nyctereutes procyono-des viverrinus (N.p.v.). The karyotype of the Chinese raccoon dog (2n = 54 + B) consists of five pairs of biarmed autosomes and 21 pairs of acrocentric autosomes. The sex chromosomes are also biarmed, with the medium-sized X and Y chromosome being the smallest chromosome in the karyotype. In addition, there is a variable (1–4) number of B chromosomes in this karyotype. A proposal for chromosome nomenclature for the Chinese raccoon dog was recently presented. The karyotype of the Japanese raccoon dog (2n = 38 + B) includes 13 pairs of biarmed chromosomes, 5 pairs of acrocentric chromosomes, and biarmed X and Y chromosomes. This subspecies also has a variable number (2–7) of B chromosomes. Although the karyotypes of both subspecies differ in chromosome number and morphology, they have the same fundamental number of chromosome arms – 66. The raccoon dog has fairly large acrocentric B chromosomes. They differ in size in the two subspecies. In the Chinese raccoon dog, these are medium-sized acrocentrics, while in the Japanese raccoon dog, they are small acrocentrics. Bs are rather positive for C banding; however, the patterns of Cb banding are not as distinct as in autosomal centromeres. R banding has shown that these structures are late replicators.
Full Text

About the authors
Larisa D. Safronova
Severtsov Institute of Ecology and Evolution of the RAS
Author for correspondence.
Email: ldsafronova@gmail.com
Grand PhD in Biological Sciences
Russian Federation, MoscowVera B. Sycheva
Severtsov Institute of Ecology and Evolution of the RAS
Email: ldsafronova@gmail.com
PhD in Biological Sciences
Russian Federation, MoscowEvgeniy G. Sergeev
V.A. Afanasyev Scientific Research Institute of Fur Farming and Rabbit Breeding of the Russian Academy of Sciences
Email: ldsafronova@gmail.com
PhD in Agricultural Sciences
Russian Federation, Village Rodniki, Ramenskoye district, Moscow regionReferences
- Lapa P., Lapinski S., Slivyak V., Barabash B. Ocenka geneticheskoj distancii mezhdu enotovidnoj sobakoj (Nyctereutes procionoides) i drugimi predstavitelyami semejstva Canidae // Vestnik VOGiS. 2009. T. 13. № 3. S. 647–654.
- Bugno-Poniewierska M., Sojecka A., Pawlina K. et al. Comparative cytogenetic analysis of sex chromosomes in several Canidae species using Zoo-FISH // Foliabiologica (Kraków). 2012. Vol. 60. PP. 11–16.
- Guyon R., Lorentzen T.D., Hitte C. et al. A 1-Mb resolution radiation hybrid map of the canimne genome. Proceedings of the National Academy of Sciences USA, 2003. № 100. РР. 5296–5301.
- Hayashizono N., Ago K., Hayashi T. et al. Amplification of Microsatellites of Japanese Raccoon Dogs (Nyctereutes procyonoides viverrinus) with Primers for the Dog ZUBECA4 Locus // Med. J. Kagoshima Univ. 2010. Vol. 61. No. 3. РР. 41–46.
- Kasperek K., Horecka B., Jakubczak A. et al. Analysis of genetic variability in farmed and wild populations of raccoon dog (Nyctereutes procyonoides) using microsatellite sequences// Annals of Animal Science. 2015. Vol. 15. No. 4. PP. 889–901. https://doi.org/10.1515/aoas-2015-0048
- Lan T., Li H., Yang S. et al. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. // 3, 10. I Science 25, 105117 October 21, 2023, 10, https://doi.org/10.1016/j.isci.2022.105117*
- Murphy J., Stanyon R. and O’brien S.J. Evolution of mammalian genome organization inferred from comparative gene mapping // Genome Biology. 2001. № 2. РР. 1–8.
- Nie W., Wang J., Perelman P. et al.Comparative chromosome painting de¢nes the karyotypic relationships among the domestic dog, Chinese raccoon dog and Japanese raccoon dog // Chromosome Research. 2003. № 11. РР. 735–740.
- Nowacka-Woszuk J. and Switonslki M. Comparative cytogenetic mapping of three genes involved in sex determination in four species of the family Canidae // Journal of Animal and Feed Sciences. 2010. № 19. PР. 5–12.
- Onderka A., Bugno M., Szeleszczuk O., Slota E. Cytogenetic investigation of racoon dogs (Nyctereutes procyonoides) // Annals of animal science. 2008. Vol. 8. № 3. РР. 271–280.
- Slaska B., Zieba G., Rozempolska-Rucinska I. et al. Evaluation of Genetic Biodiversity in Farm-bred and Wild Raccoon Dogs in Poland // Folia biologica (Kraków). 2010. Vol. 58. № 3-4. РР. 195–199. https://doi.org/10.3409/fb58_3-4.195-199
- Sosnowski J., Migalska L., Lukaszewicz A. et al. MLH1 foci as an evidence of recombination events between B chromosomes in Chinese raccoon dog (Nyctereutes procyonoides procyonoides) and red fox (Vulpes vulpes) // Genetics. 18th international colloquium of animal cytogenetics and gene mapping. June 08–10. 2008. Bucharest.
- Świtoński M., Rogalska-Niznik N., SzczerbalI., Bear M. (Chromosome polymorphism and karyotype evolution of four canids: the dog, red fox, arctic fox and raccoon dog (review) // Caryologia, 2003. № 56. РР. 375–385.
- Szczerbal I., Rogalskay-Nijniy H., Shelling C. et al. Develoрment cytogenetic map genomes of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides) and Alopex lagopus using microsatellitovs // Cytogenet Genome Res. 2003. № 102(1-4). РР. 267–71. https://doi.org/ 10.1159/000075761/
- Trifonov V.A., Perelman P.L., Kawada S.I. et al. Complex structure of B-chromosomes in two mammalian species: Apodemus peninsulae (Rodentia) and Nyctereutes procyonoides (Carnivora) // Chromosome Research 10. 2002. № 109. РР. 109–116.
- Wayne R. and Vila C. Phylogeny and Origin of the domestic dog // In: The genetics of the dog, 1st ed (edited by Ruvinsky A. and Sampson J). CABI Publishing. 2001. РР. 1–13.
- Yang F., Milne B.S., Schelling C. et al. Chromosome identification and assignment of dog DNA clones in the dog using a red fox and dog comparative map // Chromosome Research. 2000. № 8. РР. 93–100.
Supplementary files
