The usage of physiological methods in the creation of soybean varieties

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of a study of the operation of photosystem II in the leaves of nine soybean varieties bred by the All-Russian Research Institute of Soybean are presented in order to identify genotypes with increased photosynthetic activity for inclusion in the breeding process when creating highly productive varieties of a new generation. A comparative assessment of varieties is given in terms of effective quantum yield of photosynthesis (Y) and chlorophyll fluorescence (F0), relative electron transport rate (ETR) and photochemical energy conversion depending on light saturation. The soybean varieties Gracia, Sonata and Kitrossa had the highest indicators for the studied parameters, significantly exceeding the standard variety Lydia. The effective quantum yield of photosynthesis, which shows the degree of absorption of solar energy, in the Gracia and Sonata varieties during the entire growing season was at the level of 0.80–0.83 rel. units, with this indicator exceeding for the Lydia variety by 0.09–0.13 rel. units depending on the phase of plant growth and development. The quantum yield of fluorescence (F0) in the leaves of the Lydia variety during the flowering phase exceeded the Gracia, Sonata and Kitrossa varieties by 60, 56 and 63%, respectively, which indicates a reduced activity of photosystem II in this variety. The efficiency of photochemical conversion of photosynthetic energy during the flowering phase was most stable in the leaves of the Sonata variety at light levels from 600 to 1500 µmol quanta/(m2∙s). Using the soybean variety Gratsia as the maternal form (♀) when crossed with the hybrid Am.2146, which was obtained with the inclusion of the Sonata variety in the hybridization, which also has a high degree of absorption of light quanta, the Radiant variety was create. Variety passed testing in 2021–2022, and in 2023 included in the State Register of Breeding Achievements for cultivation in the Far Eastern (12) region.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Sinegovskaya

Federal Scientific Center All-Russian Scientific Research Institute of Soybean

Хат алмасуға жауапты Автор.
Email: valsin09@gmail.com

Academician of the RAS, Professor, Honored Scientist of the Russian Federation

Ресей, Blagoveshchensk, Amur region

E. Fokina

Federal Scientific Center All-Russian Scientific Research Institute of Soybean

Email: valsin09@gmail.com

PhD in Agricultural Sciences

Ресей, Blagoveshchensk, Amur region

O. Dushko

Federal Scientific Center All-Russian Scientific Research Institute of Soybean

Email: valsin09@gmail.com
Ресей, Blagoveshchensk, Amur region

Әдебиет тізімі

  1. Golovina E.V. Ekologo-geneticheskaya izmenchivost’ soderzhaniya pigmentov v list’yakh sortov soi severnogo ekotipa // Zernobobovye i krupyanye kul’tury. 2019. № 3 (31). S. 74–79.
  2. Zelentsov S.V., Moshnenko E.V., Bubnova L.A. i dr. Srednerannii tenevynoslivyi sort soi Vilana beta // Maslichnye Kul’tury. 2020. Vyp. 1 (181). S. 140–146.
  3. Ivanov L.A., Ronzhina D.A., Yudina P.K. i dr. Sezonnaya dinamika soderzhaniya khlorofillov i karotinoidov v list’yakh stepnykh i lesnykh rastenii na urovne vida i soobshchestva // Fiziologiya rastenii. 2020. T. 67 № 3. S. 278–288.
  4. Kabashnikova L.F. Khlorofill – zelenoe veshchestvo zhizni // Nauka i innovatsii. 2018. № 1 (179). S. 65–69.
  5. Koshkin E.I. Fiziologiya ustoichivosti sel’skokhozyaistvennykh kul’tur. M. 2010. 638 s.
  6. Malysh K.K., Ryazantseva T.P. Nekotorye voprosy biologii soi, svyazannye s metodikoi gibridizatsii // Trudy Amurskoi sel’skokhozyaistvennoi opytnoi stantsii. Khabarovsk. 1968. T. 2. Vyp. 1. S. 38–48.
  7. Nichiporovich A.A. Svetovoe i uglerodnoe pitanie rastenii (fotosin-tez). M., 1955. 286 s.
  8. Rusakov V.V., Posypanov G.S., Sinegovskaya V.T. Istochniki azota dlya formirovaniya semyan soi pri razlichnykh usloviyakh vyrashchivaniya // Priemy regulirovaniya produktivnosti soi. Novosibirsk, 1987. S. 108–126.
  9. Timiryazev K.A. Izbrannye sochineniya. M.: Sel’khozgiz, 1948. T. 2. 424 s.
  10. Fokina E.M., Titov S.A., Gubenko O.A. Nasledovanie khozyaistvenno tsennykh priznakov i geterozis u gibridov soi F1 // Dal’nevostochnyi agrarnyi vestnik: nauchno-prakticheskii zhurnal. 2020. Vyp. 3 (55). S. 76–81.
  11. Bjorkman O., Deming B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins // Planta. 1987. 170 (4). Р. 489–504.
  12. Fehr W.R., Caviness C.E., Burmood D.T., Pennington J.S. Stages of development descriptions for soybeans, Glycine max. (L) Merr. // Crop Sci. 1971. № 11. Р. 929–930.
  13. Krause G.H., Weis E. Chlorophyll fluorescence and photosynthesis: The basics // Annu Rev. Plant. Physiol. Plant. Mol. Biol. 1991. V. 42. P. 313–349.
  14. Krause G.H., Jahns P. Non-photochemical energy-dissipation determined by chlorophyll fluorescence quenching: characterization and function // Papageorgiou G.C, Govindjee (eds.) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, The Nether-lands. 2004. V. 19. P. 463–495.
  15. Mahlein A.K., Kuska M.T., Behmann J. New trends of digital technologies оpportunities for sugar beet cultivation // Int. sugar j. 2019. № 121 (1442). Р. 134–137.
  16. Matsuda Ryo, Ohashi-Kaneko Keiko, Fujiwara Kazuhiro, Kurata Kenji. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance // Soil Sci. and Plant Nutr. 2007. № 4 (53). P. 459–465.
  17. Rahimzadeh-Bajgiran P., Munehiro M., Omasa K. Relationships between the photochemical reflectance index (pri) and chlorophyll fluorescence parameters and plant pigment indices at different leaf growth stages. Photosynthesis Research. 2012. 113. Р. 261–271. doi: 10.1007/s11120-012-9747-4.
  18. Shcherban A.B. HD-Zip Genes and Their Role in Plant Adaptation to Environmental Factors. Russian journal of genetics. 2019. 55 (1). P. 1–9. doi: 10.1134/S1022795419010125.
  19. Zhang Y., Yang Q., Li T., Kaiser E. Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (solanum lycopersicum) // Environmental and Experimental Botany. 2018. № 149. Р. 109–119. doi: 10.1016/j.envexpbot.2018.02.014.
  20. Zheng J.F., He D.X., Ji F. Effects of light intensity and photoperiod on runner plant propagation of hydroponic strawberry transplants under LED lighting // International journal of agricultural and biological engineering. 2019. 12 (6). Р. 26–31. doi: 10.25165/j.ijabe.20191206.5265.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Quantum yield of fluorescence (F0), rms.

Жүктеу (94KB)
3. Fig. 2. Quantum efficiency of photochemical energy conversion under successive increases in light intensity, averaged over the years 2010-2020

Жүктеу (302KB)
4. Fig. 3. Rate of electron transport under successive increases in light intensity during the flowering phase, 2010-2020

Жүктеу (154KB)
5. Fig. 4. Radiant soybean variety: plant, beans, seeds

Жүктеу (127KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>