Surgical treatment of the knee joint for chondral defects and a new approach to the role and place of mosaic autochondroplasty

Cover Page

Cite item

Full Text

Abstract

The review article presents the analysis of current organ-preserving surgical treatment methods for chondral defects of the knee joint from the standpoint of their pathogenesis. We systematized and provided comparative characteristics of the methods of joint-preserving surgical treatment of patients of this category with a critical analysis of various types of operations used for full-thickness and penetrating hyaline cartilage defects. Mosaic chondroplasty, one of the leading methods of surgical treatment for III- and IV-degrees defects (according to the ICRS classification), was considered in detail. The indications, contraindications and conditions for performing mosaic autoplasty of the articular surfaces of the knee joint were analyzed using the historical retrospective and the results of current research. We outlined several debatable provisions and problems of using the classical version of mosaic chondroplasty in case of destructive-dystrophic genesis of the osteochondral defect. The dogmatic approaches to chondroplasty were raised for discussion, as we consider them requiring critical revision.

The authors presented a detailed description of the developed new methods of mosaic chondroplasty relying on the current understanding of the pathogenesis of the knee osteoarthritis and osteonecrosis, as well as the role of the subchondral bone in the development of both these conditions and associated articular cartilage defects. The surgical instruments developed by the authors for the new methods of chondroplasty were described.

About the authors

Gennadii P. Kotelnikov

Samara State Medical University

Email: g.p.kotelnikov@samsmu.ru
ORCID iD: 0000-0001-7456-6160

Academician of the RAS, PhD, Professor, Head of the Department of Traumatology, Orthopedics and Extreme Surgery n.a. Academician of RAS A.F. Krasnov

Russian Federation, Samara

Dmitrii S. Kudashev

Samara State Medical University

Author for correspondence.
Email: d.s.kudashev@samsmu.ru
ORCID iD: 0000-0001-8002-7294
SPIN-code: 4180-6470
Scopus Author ID: 57191981656
ResearcherId: GXV-4871-2022

PhD, Associate professor, Department of Traumatology, Orthopedics and Extreme Surgery n.a. Academician of RAS A.F. Krasnov, Head of the Department of Traumatology and Orthopedics No.2 of SamSMU Clinics

Russian Federation, Samara

Yurii V. Lartsev

Samara State Medical University

Email: yu.v.lartsev@samsmu.ru
ORCID iD: 0000-0003-4450-2486

PhD, Professor, Department of Traumatology, Orthopedics and Extreme Surgery n.a. Academician of RAS A.F. Krasnov

Russian Federation, Samara

Sergei D. Zuev-Ratnikov

Samara State Medical University

Email: s.d.zuev-ratnikov@samsmu.ru
ORCID iD: 0000-0001-6471-123X

PhD, Associate professor, Department of Traumatology, Orthopedics and Extreme Surgery n.a. Academician of RAS A.F. Krasnov, traumatologist-orthopedist, Department of Traumatology and Orthopedics No.2 of SamSMU Clinics

Russian Federation, Samara

Dmitrii A. Dolgushkin

Samara State Medical University

Email: d.a.dolgushkin@samsmu.ru
ORCID iD: 0000-0003-3681-5044

PhD, Associate professor, Department of Traumatology, Orthopedics and Extreme Surgery n.a. Academician of RAS A.F. Krasnov

Russian Federation, Samara

Vardan G. Asatryan

Samara State Medical University

Email: v.g.asatryan@samsmu.ru
ORCID iD: 0009-0009-1751-700X

a postgraduate student of the Department of Traumatology, Orthopedics and Extreme Surgery n.a. Academician of RAS A.F. Krasnov, traumatologist-orthopedist, Department of Traumatology and Orthopedics No.2 of SamSMU Clinics

Russian Federation, Samara

Nikita D. Shcherbatov

Samara State Medical University

Email: niksherbatov@mail.ru
ORCID iD: 0009-0007-7202-7471

clinical resident of the Department of Traumatology, Orthopedics and Extreme Surgery n.a. Academician of RAS A.F. Krasnov

Russian Federation, Samara

References

  1. Alekseeva LI, Taskina EA, Kashevarova NG. Osteoarthritis: epidemiology, classification, risk factors, and progression, clinical presentation, diagnosis, and treatment. Modern Rheumatology Journal. 2019;13(2):9-21. (In Russ.). [Алексеева Л.И., Таскина Е.А., Кашеварова Н.Г. Остеоартрит: эпидемиология, классификация, факторы риска и прогрессирования, клиника, диагностика, лечение. Современная ревматология. 2019;13(2):9-21]. https://doi.org/10.14412/1996-7012-2019-2-9-21
  2. Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function, and cartilage-bone crosstalk. Nat Rev Rheumatol. 2016;12(11):632-44. https://doi.org/10.1038/nrrheum.2016.148
  3. Egiazaryan KA, Lazishvili GD, Hramenkova IV, et al. Knee osteochondritis dissecans: surgery algorithm. Vestnik RGMU. 2018;2:77-83. (In Russ.). [Егиазарян К.А., Лазишвили Г.Д., Храменкова И.В., и др. Алгоритм хирургического лечения больных с рассекающим остеохондритом коленного сустава. Вестник РГМУ. 2018;2:77-83]. https://doi.org/10.24075/brsmu.2018.020
  4. Alan B. The Bone Cartilage Interface and Osteoarthritis. Calcified Tissue International. 2021;109:303-328. https://doi.org/10.1007/s00223-021-00866-9
  5. Ashish RS, Supriya J, Sang-Soo L, Ju-Suk N. Interplay between Cartilage and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis. Int J Mol Sci. 2013;14:19805-19830. https://doi.org/10.3390/ijms141019805
  6. Pisanu G, Cottino U, Rosso F, et al. Large osteochondral allografts of the knee: Surgical technique and indications. Joints. 2018;6:42-53. https://doi.org/10.1055/s-0038-1636925
  7. Gerasimov SA, Tenilin NA, Korytkin AA, Zykin AA. Surgical treatment of localized injuries to articular surface: the current state of the issue. Polytrauma. 2016;1:57-69. (In Russ.). [Герасимов С.А., Тенилин Н.А., Корыткин А.А., Зыкин А.А. Хирургическое лечение ограниченных повреждений суставной поверхности: современное состояние вопроса. Политравма. 2016;1:57-69].
  8. Solheim E, Hegna J, Strand T, et al. Randomized study of long-term (15-17 Years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. The American Journal of Sports Medicine. 2017:46:1-6. https://doi.org/10.1177/0363546517745281
  9. Lange JK, Lee YuYu, Spiro SK, Haas SB. Satisfaction Rates and Quality of Life Changes Following Total Knee Arthroplasty in Age-Differentiated Cohorts. Journal of Arthroplasty. 2018;33(5):1373-1378. https://doi.org/10.1016/j.arth.2017.12.031
  10. Le Roux J, Von Bormann R, Braun S, et al. Mega-OATS of the knee without specialised instrumentation: a low-cost option for large cartilage defects in a resource-restrained environment. SA Orthop J. 2022;21(2):106-110. http://dx.doi.org/10.17159/2309-8309/2022/v21n2a
  11. Solheim E, Krokeide AM, Melteig P, et al. Symptoms and function in patients with articular cartilage lesions in 1,000 knee arthroscopies. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1610-1616. https://doi.org/10.1007/s00167-014-3472-9
  12. Werner BC, Cosgrove CT, Gilmore CJ, et al. Accelerated return to sport after osteochondral autograft plug transfer. Orthop J Sports Med. 2017;5(4):2325967117702418. https://doi.org/10.1177/2325967117702418
  13. Solheim E, Hegna J, Inderhaug E, et al. Results at 10-14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1587-1593. https://doi.org/10.1007/s00167-014-3443-1
  14. Hunziker EB, Lippuner K, Keel MJB, Shintani N. An educational review of cartilage repair: precepts and practice – myths and misconceptions – progress and prospects. Osteoarthritis Cartilage. 2015;23(3):334-350. https://doi.org/10.1016/j.joca.2014.12.011
  15. Emre TY, Atbasi Z, Demircioglu DT, et al. Autologous osteochondral transplantation (mosaicplasty) in articular cartilage defects of the patellofemoral joint: retrospective analysis of 33 cases. Musculoskelet Surg. 2017;101(2):133-138. https://doi.org/10.1007/s12306-016-0448-6
  16. Patil S, Tapasvi SR. Osteochondral autografts. Curr Rev Musculoskelet Med. 2015;8(4):423-428. https://doi.org/10.1007/s12178-015-9299-2
  17. Hema M, Martin C, Joshua P, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess. 2017;21(6):1-294. https://doi.org/10.3310/hta21060
  18. Colombini A, Libonati F, Lopa S. Autologous chondrocyte implantation provides good long-term clinical results in the treatment of knee osteoarthritis: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2023;31(6):2338-2348. https://doi.org/10.1007/s00167-022-07030-2
  19. Ulstein S, Arøen A, Røtterud JH, et al. Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1207-1215. https://doi.org/10.1007/s00167-014-2843-6
  20. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):1986-1996. https://doi.org/10.1007/s00167-013-2676-8
  21. Heir S, Årøen A, Løken S, et al. Cartilage repair in the rabbit knee: mosaic plasty resulted in higher degree of tissue filling but affected subchondral bone more than microfracture technique: a blinded, randomized, controlled, long-term follow-up trial in 88 knees. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):197-209. https://doi.org/10.1007/s00167-011-1596-8
  22. Cavendish PA, Everhart JS, Peters NJ, Sommerfeldt MF, Flanigan DC. Osteochondral allograft transplantation for knee cartilage and osteochondral defects: A review of indications, technique, rehabilitation, and outcomes. JBJS Rev. 2019;7:e7. https://doi.org/10.2106/jbjs.rvw.18.00123
  23. Kabalyk MA. Biomarkers of subchondral bone remodeling in osteoarthritis. Pacific Medical Journal. 2017;1:37-41. (In Russ.). [Кабалык М.А. Биомаркеры и участники ремоделирования субхондральной кости при остеоартрозе. Тихоокеанский медицинский журнал. 2017;1:37-34]. https://doi.org/10.17238/PmJ1609-1175.2017.1.37-41
  24. Loef M, van Beest S, Kroon FPB, et al. Comparison of histological and morphometrical changes underlying subchondral bone abnormalities in inflammatory and degenerative musculoskeletal disorders: a systematic review. Osteoarthritis Cartilage. 2018;26(8):992-1002. https://doi.org/10.1016/j.joca.2018.05.007
  25. Boyde A, Davis GR, Mills D, et al. On fragmenting, densely mineralized acellular protrusions into articular cartilage and their possible role in osteoarthritis. J Anat. 2014;225(4):436-446. https://doi.org/10.1111/joa.12226
  26. Roy KA, Jennifer R, Jonathan PD. Contribution of Circulatory Disturbances in Subchondral Bone to the Pathophysiology of Osteoarthritis. Curr Rheumatol Rep. 2017;19:49. 10.1007/s11926-017-0660-x' target='_blank'>https://doi: 10.1007/s11926-017-0660-x
  27. Malanin DA, Pisarev VB, Novochadov VV. Restoration of cartilage damage in the knee joint: experimental and clinical aspects. Volgograd, 2010. (In Russ.). [Маланин Д.А., Писарев В.Б., Новочадов В.В. Восстановление повреждений хряща в коленном суставе: экспериментальные и клинические аспекты. Волгоград, 2010]. ISBN 978-5-98461-765-9. EDN QLYHOH

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. View of a cancellous bone autograft formed from the wing of the ilium.

Download (1MB)
3. Figure 2. Intraoperative view of the articular surface defect from the front (A) and side (B) after completion of osteochondral autoplasty.

Download (1MB)
4. Figure 3. Electron micrograph of hyaline articular cartilage chondrocytes forming a layer in culture on the 16th day of cultivation (native preparation, magnification 100).

Download (1MB)
5. Figure 4. Intraoperative view of the defect area after chondroplasty with spongy bone autografts impregnated with a suspension of in vitro cultured autologous chondrocytes.

Download (2MB)
6. Figure 5. Schematic representation of performing the muscle plastic stage using arthroscopy: formation of a channel in the metaphyseal bone of the femoral condyle for a muscle flap (A) and insertion of a muscle flap in the formed channel (B).

Download (1MB)
7. Figure 6. Stage of the operation – mobilization of the gracilis muscle.

Download (1MB)

Copyright (c) 2024 Kotelnikov G.P., Kudashev D.S., Lartsev Y.V., Zuev-Ratnikov S.D., Dolgushkin D.A., Asatryan V.G., Shcherbatov N.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».