Linear inverse problems for integro-differential equations in Banach spaces with a bounded operator
- 作者: Fedorov V.E.1, Godova A.D.1
-
隶属关系:
- Chelyabinsk State University
- 期: 卷 70, 编号 4 (2024)
- 页面: 679-690
- 栏目: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327862
- DOI: https://doi.org/10.22363/2413-3639-2024-70-4-679-690
- EDN: https://elibrary.ru/WWORZS
- ID: 327862
如何引用文章
全文:
详细
In this paper, we study the questions of well-posedness of linear inverse problems for equations in Banach spaces with an integro-differential operator of the Riemann-Liouville type and a bounded operator at the unknown function. A criterion of well-posedness is found for a problem with a constant unknown parameter; in the case of a scalar convolution kernel in an integro-differential operator, this criterion is formulated as conditions for the characteristic function of the inverse problem not to vanish on the spectrum of a bounded operator. Sufficient well-posedness conditions are obtained for a linear inverse problem with a variable unknown parameter. Abstract results are used in studying a model inverse problem for a partial differential equation.
作者简介
V. Fedorov
Chelyabinsk State University
编辑信件的主要联系方式.
Email: kar@csu.ru
Chelyabinsk, Russia
A. Godova
Chelyabinsk State University
Email: sashka_1997_godova55@mail.ru
Chelyabinsk, Russia
参考
- Данфорд Н., Шварц Дж. Линейные операторы. Общая теория.-М.: Иностр. лит., 1962.
- Нахушев А.М. Дробное исчисление и его применение. -М.: Физматлит, 2003.
- Прилепко А.И. Метод полугрупп решения обратных, нелокальных и неклассических задач. Прогноз-управление и прогноз-наблюдение эволюционных уравнений. I// Дифф. уравн.- 2005.- 41, № 11.- С. 1560-1571.
- Псху А.В. Уравнения в частных производных дробного порядка.-М.: Наука, 2005.
- Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения.-Минск: Наука и техника, 1987.
- Федоров В.Е., Годова А.Д. Интегро-дифференциальные уравнения в банаховых пространствах и аналитические разрешающие семейства операторов// Соврем. мат. Фундам. направл.-2023.- 69, № 1. -С. 166-184.
- Ashurov R.R., Kadirkulov B. J., Turmetov B.Kh. On the inverse problem of the Bitsadze-Samarskii type for a fractional parabolic equation// Пробл. анализа.-2023.-12, № 3.- С. 20-40.
- Atangana A., Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model// Thermal Sci. -2016.- 20.-C. 763-769.
- Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel// Progr. Fract. Differ. Appl. - 2015.- 1, № 2. -С. 1-13.
- Fedorov V.E., Godova A.D., Kien B.T. Integro-differential equations with bounded operators in Banach spaces// Bullю Karaganda Univ. Math. Ser.-2022.-№ 2.-С. 93-107.
- Fedorov V.E., Ivanova N.D. Identification problem for degenerate evolution equations of fractional order// Fract. Calc. Appl. Anal.- 2017.- 20, № 3.-С. 706-721.
- Fedorov V.E., Kosti´c M. Identification problem for strongly degenerate evolution equations with the Gerasimov-Caputo derivative// Differ. Equ. -2020.-56, № 12.-С. 1613-1627.
- Fedorov V.E., Nagumanova A.V., Avilovich A.S. A class of inverse problems for evolution equations with the Riemann-Liouville derivative in the sectorial case// Math. Methods Appl. Sci. - 2021.- 44, № 15.- С. 11961-11969.
- Glushak A.V. On an inverse problem for an abstract differential equation of fractional order// Math. Notes.- 2010.- 87, № 5-6.- С. 654-662.
- Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations.- Amsterdam-Boston-Heidelberg: Elsevier Science Publ., 2006.
- Kosti´c M. Abstract Volterra integro-differential equations.- Boca Raton: CRC Press, 2015.
- Kostin A.B., Piskarev S.I. Inverse source problem for the abstract fractional differential equation// J. Inverse Ill-Posed Probl. -2021.- 29, № 2.- С. 267-281.
- Orlovsky D.G. Parameter determination in a differential equation of fractional order with Riemann- Liouville fractional derivative in a Hilbert space// Журн. СФУ. Сер. Мат. и физ.-2015.- 8, № 1.- С. 55-63.
- Orlovsky D.G. Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space// J. Phys. Conf. Ser.- 2019.- 1205, № 1.- 012042.
- Orlovsky D., Piskarev S. Inverse problem with final overdetermination for time-fractional differential equation in a Banach space// J. Inverse Ill-Posed Probl. -2022.-30, № 2.- С. 221-237.
- Prabhakar T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel// Yokohama Math. J.-1971.-19.- С. 7-15.
- Dа Prato G., Iannelli M. Linear integro-differential equations in Banach spaces// Rend. Semin. Mat. Univ. Padova.- 1980.-62.-С. 207-219.
- Pru¨ss J. Evolutionary integral equations and applications.- Basel: Springer, 1993.
补充文件
