Линейные обратные задачи для интегро-дифференциальных уравнений в банаховых пространствах с ограниченным оператором

Обложка

Цитировать

Полный текст

Аннотация

Исследованы вопросы корректности линейных обратных задач для уравнений в банаховых пространствах с интегро-дифференциальным оператором типа Римана-Лиувилля и ограниченным оператором при искомой функции. Найден критерий корректности для задачи с постоянным неизвестным параметром, в случае скалярного ядра свертки в интегродифференциальном операторе этот критерий сформулирован в виде условий необращения в нуль характеристической функции обратной задачи на спектре ограниченного оператора. Для линейной обратной задачи с переменным неизвестным параметром получены достаточные условия корректности. Абстрактные результаты использованы при исследовании модельной обратной задачи для уравнения в частных производных.

Об авторах

В. Е. Федоров

Челябинский государственный университет

Автор, ответственный за переписку.
Email: kar@csu.ru
Челябинск, Россия

А. Д. Годова

Челябинский государственный университет

Email: sashka_1997_godova55@mail.ru
Челябинск, Россия

Список литературы

  1. Данфорд Н., Шварц Дж. Линейные операторы. Общая теория.-М.: Иностр. лит., 1962.
  2. Нахушев А.М. Дробное исчисление и его применение. -М.: Физматлит, 2003.
  3. Прилепко А.И. Метод полугрупп решения обратных, нелокальных и неклассических задач. Прогноз-управление и прогноз-наблюдение эволюционных уравнений. I// Дифф. уравн.- 2005.- 41, № 11.- С. 1560-1571.
  4. Псху А.В. Уравнения в частных производных дробного порядка.-М.: Наука, 2005.
  5. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения.-Минск: Наука и техника, 1987.
  6. Федоров В.Е., Годова А.Д. Интегро-дифференциальные уравнения в банаховых пространствах и аналитические разрешающие семейства операторов// Соврем. мат. Фундам. направл.-2023.- 69, № 1. -С. 166-184.
  7. Ashurov R.R., Kadirkulov B. J., Turmetov B.Kh. On the inverse problem of the Bitsadze-Samarskii type for a fractional parabolic equation// Пробл. анализа.-2023.-12, № 3.- С. 20-40.
  8. Atangana A., Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model// Thermal Sci. -2016.- 20.-C. 763-769.
  9. Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel// Progr. Fract. Differ. Appl. - 2015.- 1, № 2. -С. 1-13.
  10. Fedorov V.E., Godova A.D., Kien B.T. Integro-differential equations with bounded operators in Banach spaces// Bullю Karaganda Univ. Math. Ser.-2022.-№ 2.-С. 93-107.
  11. Fedorov V.E., Ivanova N.D. Identification problem for degenerate evolution equations of fractional order// Fract. Calc. Appl. Anal.- 2017.- 20, № 3.-С. 706-721.
  12. Fedorov V.E., Kosti´c M. Identification problem for strongly degenerate evolution equations with the Gerasimov-Caputo derivative// Differ. Equ. -2020.-56, № 12.-С. 1613-1627.
  13. Fedorov V.E., Nagumanova A.V., Avilovich A.S. A class of inverse problems for evolution equations with the Riemann-Liouville derivative in the sectorial case// Math. Methods Appl. Sci. - 2021.- 44, № 15.- С. 11961-11969.
  14. Glushak A.V. On an inverse problem for an abstract differential equation of fractional order// Math. Notes.- 2010.- 87, № 5-6.- С. 654-662.
  15. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations.- Amsterdam-Boston-Heidelberg: Elsevier Science Publ., 2006.
  16. Kosti´c M. Abstract Volterra integro-differential equations.- Boca Raton: CRC Press, 2015.
  17. Kostin A.B., Piskarev S.I. Inverse source problem for the abstract fractional differential equation// J. Inverse Ill-Posed Probl. -2021.- 29, № 2.- С. 267-281.
  18. Orlovsky D.G. Parameter determination in a differential equation of fractional order with Riemann- Liouville fractional derivative in a Hilbert space// Журн. СФУ. Сер. Мат. и физ.-2015.- 8, № 1.- С. 55-63.
  19. Orlovsky D.G. Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space// J. Phys. Conf. Ser.- 2019.- 1205, № 1.- 012042.
  20. Orlovsky D., Piskarev S. Inverse problem with final overdetermination for time-fractional differential equation in a Banach space// J. Inverse Ill-Posed Probl. -2022.-30, № 2.- С. 221-237.
  21. Prabhakar T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel// Yokohama Math. J.-1971.-19.- С. 7-15.
  22. Dа Prato G., Iannelli M. Linear integro-differential equations in Banach spaces// Rend. Semin. Mat. Univ. Padova.- 1980.-62.-С. 207-219.
  23. Pru¨ss J. Evolutionary integral equations and applications.- Basel: Springer, 1993.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).