On globally smooth oscillating solutions of nonstrictly hyperbolic systems
- Authors: Rozanova O.S.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 71, No 1 (2025): Nonlocal and nonlinear problems
- Pages: 147-158
- Section: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327845
- DOI: https://doi.org/10.22363/2413-3639-2025-71-1-147-158
- EDN: https://elibrary.ru/VFGYMJ
- ID: 327845
Cite item
Full Text
Abstract
A class of nonstrictly hyperbolic systems of quasilinear equations with oscillatory solutions of the Cauchy problem, globally smooth in time in some open neighborhood of the zero stationary state, is found. For such systems, the period of oscillation of solutions does not depend on the initial point of the Lagrangian trajectory. The question of the possibility of constructing these systems in a physical context is also discussed, and nonrelativistic and relativistic equations of cold plasma are studied from this point of view.
About the authors
O. S. Rozanova
Lomonosov Moscow State University
Author for correspondence.
Email: rozanova@mech.math.msu.su
Moscow, Russia
References
- Трещев Д.В. Об изохронности// Тр. МИАН.-2023.-322.-C. 206-232.
- Calogero F. Isochronous systems.- Oxford: Oxford Univ. Press, 2008.
- Carrillo J.A., Shu R. Existence of radial global smooth solutions to the pressureless Euler-Poisson equations with quadratic confinement// Arch. Ration. Mech. Anal. - 2023.- 247.-73.
- Chicone C. Ordinary differential equations with applications.- New York: Springer, 1999.
- Dafermos C.M. Hyperbolic conservation laws in continuum physics.- Berlin-Heidelberg: Springer, 2016.
- Davidson R.C. Methods in nonlinear plasma theory.- New York: Acad. Press, 1972.
- Dong G., Liu C., Yang J. On the topology of isochronous centers of hamiltonian differential systems// Internat. J. Bifur. Chaos Appl. Sci. Engrg.- 2019.- 29, № 6.- 1950099.
- Gasull A. On isochronous Hill equations// Workshop on Periodic Orbits, Bellaterra, CRM, Feb. 7-9, 2024.- https://www.gsd.uab.cat/new?controller=publications&task=download&ID=slides.pdf7955f73fa05752ccdb4225feda1aac57.pdf&OD=slides.pdf)
- Gorni G., Zampieri G. Global isochronous potentials// Qual. Theory Dyn. Syst.- 2013.- 12, № 2.- C. 407-416.
- Hill J.M., Lloyd N.G., Pearson J.M. Algorithmic derivation of isochronicity conditions// Nonlinear Anal. -2007.-67, № 1.- C. 52-69.
- Engelberg S., Liu H., Tadmor E. Critical thresholds in Euler-Poisson equations// Indiana Univ. Math. J.- 2001.-50.-C. 109-157.
- Fernandes W., Romanovski V.G., Sultanova M., Tang Y. Isochronicity and linearizability of a planar cubic system// J. Math. Anal. Appl. - 2017.- 450, № 1. -C. 795-813.
- Freiling G. A survey of nonsymmetric Riccati equations// Linear Algebra Appl. - 2002.-351-352.- C. 243-270.
- Kova˘ci´c I. Nonlinear isochronous oscillators// В сб.: «Nonlinear Oscillations».-Cham: Springer, 2020.- С. 189-222.
- Miller W. Jr, Post S., Winternitz P. Classical and quantum superintegrability with applications// J. Phys. A: Math. Theor.- 2013.- 46.-423001.
- Mustafa O. Isochronous n-dimensional nonlinear PDM-oscillators: linearizability, invariance and exact solvability// Eur. Phys. J. Plus. -2021.- 136.- 249.
- Reid W.T. Riccati differential equations.- New York: Academic Press, 1972.
- Romanovski V.G., Shafer D.S. The center and cyclicity problems: A computational algebra approach.- Boston: Birkhauser, 2009.
- Rozanova O.S. On the behavior of multidimensional radially symmetric solutions of the repulsive Euler- Poisson equations// Phys. D. Nonlinear Phenom. -2023.-443.- 133578.
- Rozanova O.S. The repulsive Euler-Poisson equations with variable doping profile// Phys. D. Nonlinear Phenom. -2024.- 444.-134454.
- Rozanova O.S. Criterion of singularity formation for radial solutions of the pressureless Euler-Poisson equations in exceptional dimension// J. Math. Anal. Appl. -2025.-548, № 2.-129394.
- Rozanova O.S., Chizhonkov E.V. On the conditions for the breaking of oscillations in a cold plasma// Z. Angew. Math. Phys.- 2021.- 72, № 1.-13.
- Sabatini M. On the period function of Li´enard systems// J. Differ. Equ. - 1999.- 152.- C. 467-487.
Supplementary files
