Актуальное состояние и перспективы исследований в термоупругости
- Авторы: Левина Л.В.1, Пеньков В.Б.1, Лаврентьева М.А.1
-
Учреждения:
- Липецкий государственный технический университет
- Выпуск: Том 71, № 2 (2025): Современные методы теории краевых задач. Понтрягинские чтения — XXXV
- Страницы: 240-252
- Раздел: Статьи
- URL: https://journals.rcsi.science/2413-3639/article/view/327829
- DOI: https://doi.org/10.22363/2413-3639-2025-71-2-240-252
- EDN: https://elibrary.ru/MVAOUM
- ID: 327829
Цитировать
Полный текст
Аннотация
Выполнен обзор работ последнего времени по термоупругости. Рекомендуется применение метода граничных состояний (МГС) для построения численно-аналитических решений задач средствами вычислительных систем, поддерживающих «компьютерные алгебры». Сформированы структуры гильбертовых пространств внутренних и граничных состояний термоэластостатической среды (ТЕ) и определен способ описания скалярных произведений обоих изоморфных пространств. Обнаружена возможность экономии вычислительных средств для выполнения процедуры ортогонализации базисов сепарабельных пространств. При решении связанных/несвязанных по граничным условиям (ГУ) задач термоупругости отпала необходимость в декомпозиции их на традиционную последовательность из температурной и упругой задачи. Проведена классификация ТЕ-задач. Выполнены расчеты и прокомментированы результаты для двух классов задач.
Об авторах
Л. В. Левина
Липецкий государственный технический университет
Автор, ответственный за переписку.
Email: satalkina_lyubov@mail.ru
Липецк, Россия
В. Б. Пеньков
Липецкий государственный технический университет
Email: vbpenkov@mail.ru
Липецк, Россия
М. А. Лаврентьева
Липецкий государственный технический университет
Email: masy1997@gmail.com
Липецк, Россия
Список литературы
- Иванычев Д. А. Метод граничных состояний в задачах теории упругости для анизотропных сред// Дисс. к.ф.-м.н. - Тула: ТулГУ, 2010.
- Коваленко А. Д. Основы термоупругости. - Киев: Наукова Думка, 1970.
- Лурье А. И. Теория упругости. - М.: Наука, 1970.
- Нiколаєв О. Г., Скiцка М. В. Thermoelastic problem for a space with two inclusions and heat generation// Пробл. обчисл. мех. i мiцн. констр. - 2024. - 1, № 38. - С. 248-268.
- Новикова О. С. Построение полнопараметрических аналитических решений задач теории упругости на основе метода граничных состояний// Дисс. к.ф.-м.н. - Липецк, 2019.
- Пеньков В. Б., Левина Л. В. Метод опорного базиса построения частного решения линейного неоднородного операторного уравнения математической физики// Вестн. ВГУ. Сер. Физ. Мат. - 2022. - № 3. - С. 91-101.
- Пеньков В. В. Метод граничных состояний в задачах линейной механики// Дисс. к.ф.-м.н. - Тула, 2002.
- Работнов Ю. Н. Механика деформируемого твердого тела. - М.: Наука, 1979.
- Рязанцева Е. А. Метод граничных состояний в задачах теории упругости с сингулярностями физического и геометрического характера// Дисс. к.ф.-м.н. - Липецк, 2015.
- Саталкина Л. В. Метод граничных состояний в задачах теории упругости неоднородных тел и термоупругости// Дисс. к.ф.-м.н. - Липецк, 2010.
- Стебенев И. Н. Метод граничных состояний в задачах теории упругости об установившихся колебаниях изотропных тел// Дисс. к.ф.-м.н. - Липецк, 2003.
- Трусделл К. Первоначальный курс рациональной механики сплошных сред. - М.: Мир, 1975.
- Харитоненко А. А. Моделирование состояний гармонических сред// Дисс. к.ф.-м.н. - Липецк, 2006.
- Шульмин А. С. Равновесие изотропного упругого пространства, содержащего полости и включения// Дисс. к.ф.-м.н. - Липецк, 2014.
- Al Nahas R. On the use of a spacetime formalism for thermomechanical applications// Дисс. PhD. - Troyes: Univ. de Technologie de Troyes, 2021.
- Boudrahem N., Berboucha A. Theoretical justification of Ventcel’s boundary conditions for a thin layer three-dimensional thermoelasticity problem// Miskolc Math. Notes. - 2021. - 22, № 2. - С. 581-598.
- Chamekh R. Strat´egies de jeux pour quelques probl`emes inverses// Дисс. PhD. - COMUE Univ. Cˆote d’Azur, 2015-2019; Univ. de Tunis El Manar, 2019.
- Ebrahimi M. T., Balint D. S., Dini D. An analytical solution for multiple inclusions subject to a general applied thermal field// J. Thermal Stresses. - 2023. - 46, № 11. - С. 1180-1198.
- Fang R., Zhang K., Song K., Kai Y. A deep learning method for solving thermoelastic coupling problem// Z. Naturforschung A. - 2024. - 79, № 8. - С. 851-871.
- Ghavamian A. A. Computational framework for a first-order system of conservation laws in thermoelasticity// Дисс. PhD. - Ecole centrale de Nantes, Swansea Univ., 2020.
- Hematiyan M. R., Mohammadi M., Tsai Ch.-Ch. Method of fundamental solutions for anisotropic thermoelastic problems// Appl. Math. Model. - 2021. - 95. - С. 200-218.
- Kushnir R. M., Tokovyy Y. V., Boiko D. S. Direct integration method in three-dimensional elasticity and thermoelasticity problems for inhomogeneous transversely isotropic solids: governing equations in terms of stresses// Bull. T. Shevchenko Natl. Univ. Kyiv. Ser. Phys. Math. - 2019. - № 1. - С. 102-105.
- Liu B. A high-performance boundary element method and its applications in engineering// Дисс. PhD. - Swansea: Swansea Univ., 2022.
- Pimpare S. B., Sutar C. S., Chaudhari K. K. An analytical approach of heat transfer modelling with thermal stresses in circular plate by means of Gaussian heat source and stress function// Phys. Scripta. - 2021. - 97, № 1. - 015205.
- Rabette F. Pr´ediction de la microfissuration par champ de phase et m´ethode FFT pour les mat´eriaux ´energ´etiques comprim´es// Дисс. PhD. - Paris: Univ. Paris Sciences et Lettres, 2021.
- Soni D. Nonlinear dynamics of thermoelastic plates// Master’s Thesis. - West Lafayette: School of Mechanical Engineering, Purdue University, 2023.
- Tan Ch.-H., Xu B.-B., Zheng Y.-T., Zhang S.-Q., Jiang W.-W., Yang K., Gao X.-W. Analysis of dynamic coupled thermoelasticity problems based on element differential method// Int. J. Heat Mass Transfer. - 2024. - 222. - 125216.
- Wang K., Li P., Zhang K. Hybrid Trefftz finite element method for heat conduction in cylindrical composite laminates// J. Thermal Stresses. - 2023. - 46, № 12. - С. 1296-1312.
- Wang Y., Li J., Wang L., Hu C., Shen H., Liu J. Semi-analytical solutions of the three-dimensional sizedependent thermoelastic contact of the microstructured materials under a hot indenter// Math. Mech. Solids. - 2025. - DOI: doi: 10.1177/10812865251315955.
- Wu C. Virtual experiments and designs of composites with the inclusion-based boundary element method (iBEM)// Дисс. PhD. - New York: Columbia University, 2021.
- Xie K., Song H., Schiavone P., Gao C. Analytical solution of the temperature-dependent thermoelastic problem induced by Joule heating and the presence of an elliptic cavity// J. Thermal Stresses. - 2024. - 47, № 1. - С. 115-142.
- Zhang H. L., Kim S., Choi G., Xie D. M., Cho H. H. Analysis of thermoelastic problems in isotropic solids undergoing large temperature changes based on novel models of thermoelasticity// Int. J. Heat Mass Transfer. - 2021. - 177. - 121576.
- Zhao M.-J., Cen S., Shang Y., Li C.-F. Development of new thermoelastic Petrov-Galerkin finite elements with enhanced precision and distortion tolerance// Acta Mech. - 2025. - 236, № 3. - С. 2233-2268. - doi: 10.1007/s00707-025-04260-6.
- Zwicke F. Design of inverse molds in pressure casting based on the finite element method// Дисс. PhD. - Aachen: RWTH Aachen Univ., 2020.
Дополнительные файлы
