Exponential stability of the flow for a generalized Burgers equation on a circle
- Авторлар: Djurdjevac A.1, Shirikyan A.R.2,3
-
Мекемелер:
- Freie Universitat Berlin
- CY Cergy Paris University
- RUDN University
- Шығарылым: Том 69, № 4 (2023)
- Беттер: 588-598
- Бөлім: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/327751
- DOI: https://doi.org/10.22363/2413-3639-2023-69-4-588-598
- EDN: https://elibrary.ru/YFDPHA
- ID: 327751
Дәйексөз келтіру
Толық мәтін
Аннотация
The paper deals with the problem of stability for the flow of the 1D Burgers equation on a circle. Using some ideas from the theory of positivity preserving semigroups, we establish the strong contraction in the \(L^1\) norm. As a consequence, it is proved that the equation with a bounded external force possesses a unique bounded solution on \(R\), which is exponentially stable in \(H^1\) as \(t\to+\infty\). In the case of a random external force, we show that the difference between two trajectories goes to zero with probability \(1\).
Негізгі сөздер
Авторлар туралы
A. Djurdjevac
Freie Universitat Berlin
Хат алмасуға жауапты Автор.
Email: adjurdjevac@zedat.fu-berlin.de
Berlin, Germany
A. Shirikyan
CY Cergy Paris University; RUDN University
Email: Armen.Shirikyan@cyu.fr
Cergy-Pontoise, France; Moscow, Russia
Әдебиет тізімі
- Бесов О. В., Ильин В. П., Никольский С. М. Интегральные представления функций и теоремы вложения. - М.: Наука, 1975.
- Kружков С. Н. О задаче Коши для некоторых классов квазилинейных параболических уравнений// Мат. заметки. - 1969. - 6, № 3. - С. 295-300.
- Крылов Н. В. Нелинейные эллиптические и параболические уравнения второго порядка. - М.: Наука, 1985.
- Крылов Н. В., Сафонов М. В. Некоторое свойство решений параболических уравнений с измеримыми коэффициентами// Изв. АН СССР. Сер. мат. - 1980. - 44, № 1. - С. 161-175.
- Ландис E. M. Уравнения второго порядка эллиптического и параболического типов. - М.: Наука, 1971.
- Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач. - М.: Мир, 1972.
- Лионс Ж.-Л., Мадженес Э. Неоднородные граничные задачи и их приложения. Т. 1. - М.: Мир, 1971.
- Bakhtin Y., Li L. Thermodynamic limit for directed polymers and stationary solutions of the Burgers equation// Commun. Pure Appl. Math. - 2019. - 72, № 3. - С. 536-619.
- Boritchev A. Sharp estimates for turbulence in white-forced generalised Burgers equation// Geom. Funct. Anal. - 2013. - 23, № 6. - С. 1730-1771.
- Chung J., Kwon O. Asymptotic behavior for the viscous Burgers equation with a stationary source// J. Math. Phys. - 2016. - 57, № 10. - 101506.
- Dunlap A., Graham C., Ryzhik L. Stationary solutions to the stochastic Burgers equation on the line// Commun. Math. Phys. - 2021. - 382, № 2. - С. 875-949.
- Djurdjevac A., Rosati T. Synchronisation for scalar conservation laws via Dirichlet boundary// ArXiv. - 2022. - 2211.05814.
- Djurdjevac A., Shirikyan A. Stabilisation of a viscous conservation law by a one-dimensional external force// ArXiv. - 2022. - 2204.03427.
- Evans L. C. Partial differential equations. - Providence: Am. Math. Soc., 2010.
- Hill A. T., Su¨li E. Dynamics of a nonlinear convection-diffusion equation in multidimensional bounded domains// Proc. Roy. Soc. Edinburgh Sect. A. - 1995. - 125, № 2. - С. 439-448.
- H¨ormander L. Lectures on nonlinear hyperbolic differential equations. - Berlin: Springer, 1997.
- Jauslin H. R., Kreiss H. O., Moser J. On the forced Burgers equation with periodic boundary conditions// В сб.: «Differential equations: La Pietra 1996». - Providence: Am. Math. Soc., 1999. - С. 133-153.
- Kalita P., Zgliczyn´ski P. On non-autonomously forced Burgers equation with periodic and Dirichlet boundary conditions// Proc. Roy. Soc. Edinburgh Sect. A. - 2020. - 150, № 4. - С. 2025-2054.
- Kifer Y. The Burgers equation with a random force and a general model for directed polymers in random environments// Probab. Theory Related Fields. - 1997. - 108, № 1. - С. 29-65.
- Shirikyan A. Global exponential stabilisation for the Burgers equation with localised control// J. E´ c. Polytech. Math. - 2017. - 4. - С. 613-632.
- Sina˘ı Ya. G. Two results concerning asymptotic behavior of solutions of the Burgers equation with force// J. Stat. Phys. - 1991. - 64, № 1-2. - С. 1-12.
Қосымша файлдар
