To the Problem on Small Oscillations of a System of Two Viscoelastic Fluids Filling Immovable Vessel: Model Problem

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

In this paper, we study the scalar conjugation problem, which models the problem of small oscillations of two viscoelastic fluids filling a fixed vessel. An initial-boundary value problem is investigated and a theorem on its unique solvability on the positive semiaxis is proven with semigroup theory methods. The spectral problem that arises in this case for normal oscillations of the system is studied by the methods of the spectral theory of operator functions (operator pencils). The resulting operator pencil generalizes both the well-known S. G. Kreyn’s operator pencil (oscillations of a viscous fluid in an open vessel) and the pencil arising in the problem of small motions of a viscoelastic fluid in a partially filled vessel. An example of a two-dimensional problem allowing separation of variables is considered, all points of the essential spectrum and branches of eigenvalues are found. Based on this two-dimensional problem, a hypothesis on the structure of the essential spectrum in the scalar conjugation problem is formulated and a theorem on the multiple basis property of the system of root elements of the main operator pencil is proved.

Авторлар туралы

D. Zakora

V. I. Vernadsky Crimean Federal University

Хат алмасуға жауапты Автор.
Email: dmitry.zkr@gmail.com
Simferopol, Russia

N. Kopachevsky

V. I. Vernadsky Crimean Federal University

Email: kopachevsky@list.ru
Simferopol, Russia

Әдебиет тізімі

  1. Азизов Т. Я., Иохвидов И. С. Основы теории линейных операторов в пространствах с индефинитной метрикой. - М.: Наука, 1986.
  2. Голдстейн Дж. Полугруппы линейных операторов и их приложения. - Киев: Выща школа, 1989.
  3. Като Т. Теория возмущений линейных операторов. - М.: Мир, 1972.
  4. Копачевский Н. Д. Абстрактная формула Грина и некоторые ее приложения. - Симферополь: ООО «Форма», 2016.
  5. Копачевский Н. Д. К проблеме малых движений системы из двух вязкоупругих жидкостей в неподвижном сосуде// Соврем. мат. Фундам. направл. - 2018. - 64, № 3. - С. 547-572.
  6. Копачевский Н. Д., Крейн С. Г., Нго Зуй Кан. Операторные методы в линейной гидродинамике. Эволюционные и спектральные задачи. - М.: Наука, 1989.
  7. Крейн C. Г. О колебаниях вязкой жидкости в сосуде// Докл. АН СССР. - 1964. - 159, № 2. - C. 262- 265.
  8. Крейн C. Г. Линейные дифференциальные уравнения в банаховом пространстве. - М.: Наука, 1967.
  9. Крейн C. Г., Лаптев Г. И. К задаче о движении вязкой жидкости в открытом сосуде// Функц. анализ и его прилож. - 1968. - 2, № 1. - C. 40-50.
  10. Маркус А. С. Введение в спектральную теорию полиномиальных операторных пучков. - Кишинев: «Штиинца», 1986.
  11. Маркус А. С., Мацаев В. И. Теоремы о сравнении спектров линейных операторов и спектральные асимптотики// Тр. Моск. мат. об-ва. - 1982. - 45. - C. 133-181.
  12. Маркус А. С., Мацаев В. И. Теорема о сравнении спектров и спектральная асимптотика для пучка М. В. Келдыша// Мат. сб. - 1984. - 123, № 3. - C. 391-406.
  13. Милославский А. И. Спектральный анализ малых колебаний вязкоупругой жидкости в открытом контейнере. - Киев: Ин-т мат. НАН Украины, 1989. - Деп. рукопись № 1221.
  14. Милославский А. И. Спектр малых колебаний вязкоупругой жидкости в открытом сосуде// Усп. мат. наук. - 1989. - 44, № 4.
  15. Милославский А. И. Спектр малых колебаний вязкоупругой наследственной среды// Докл. АН СССР. - 1989. - 309, № 3. - С. 532-536.
  16. Azizov T. Ya., Kopachevskii N. D., Orlova L. D. Evolution and spectral problems related to small motions of viscoelastic fluid// Am. Math. Soc. Transl. - 2000. - 199.- С. 1-24.
  17. Birman M. Sh., Solomyak M. Z. Asymptotic behavior of the spectrum of differential equations// J. Soviet Math. - 1979. - 12, № 3. - С. 247-283.
  18. Engel K.-J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. - New York: SpringerVerlag, 2000.
  19. Gagliardo E. Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili// Rend. Semin. Mat. Univ. Padova. - 1957. - 27. - С. 284-305.
  20. Gohberg I., Goldberg S., Kaashoek M. A. Classes of Linear Operators. Vol. 1. - Basel-Boston-Berlin: Birkha¨user, 1990.
  21. Helton J. W. Unitary operators on a space with an indefinite inner product// J. Funct. Anal. - 1970. - 6, № 3. - С. 412-440.
  22. Kopachevsky N. D., Krein S. G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: NonselfAdjoint Problems for Viscous Fluids. - Basel-Boston-Berlin: Birkha¨user, 2003.
  23. Miloslavsky A. I. Stability of certain classes of evolution equations// Sib. Math. J. - 1985. - 26, № 5. - С. 723-735.
  24. Miloslavskii A. I. Stability of a viscoelastic isotropic medium// Soviet Phys. Dokl. - 1988. - 33. - С. 300.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».