Том 69, № 3 (2023)

Статьи

О глобальных слабых решениях уравнений Власова-Пуассона с внешним магнитным полем

Беляева Ю.О., Скубачевский А.Л.

Аннотация

Рассматривается первая смешанная задача для системы уравнений Власова-Пуассона с заданным внешним магнитным полем в ограниченной области. Эта задача описывает кинетику высокотемпературной плазмы в установках управляемого термоядерного синтеза и рассматривается относительно неизвестных функций-потенциала электрического поля, функций распределения положительно заряженных ионов и электронов. Дополнительно предполагается, что функции распределения заряженных частиц удовлетворяют условию зеркального отражения от границы рассматриваемой области. В работе доказано существование глобальных слабых решений такой задачи.

Современная математика. Фундаментальные направления. 2023;69(3):383-398
pages 383-398 views

Гладкость обобщенных решений краевой задачи для дифференциально-разностного уравнения второго порядка со смешанными граничными условиями

Иванов Н.О.

Аннотация

Рассматривается краевая задача со смешанными граничными условиями для дифференциально-разностного уравнения второго порядка на интервале конечной длины (0 ,d). Доказано существование обобщенного решения задачи, а также исследованы условия на правую часть дифференциально-разностного уравнения, обеспечивающие гладкость обобщенного решения на всем интервале.

Современная математика. Фундаментальные направления. 2023;69(3):399-417
pages 399-417 views

Математическая модель переноса вещества в винтовом магнитном поле с использованием граничных условий на бесконечности

Лазарева Г.Г., Оксогоева И.П., Судников А.В.

Аннотация

В работе представлена математическая модель переноса плазмы в открытой магнитной ловушке с использованием условия равенства нулю концентрации плазмы на бесконечности. Использованы новые экспериментальные данные, полученные на установке СМОЛА в ИЯФ им. Г.И. Будкера СО РАН. Удержание плазмы в установке осуществляется за счёт передачи импульса от магнитного поля с винтовой симметрией вращающейся плазме. Математическая модель основана на стационарном уравнении переноса плазмы в аксиально-симметричной постановке. Стационарное уравнение переноса вещества в содержит вторые производные по пространству. Выбран оптимальный шаблон для аппроксимации смешанной производной на основе тестовой задачи. Проведено сравнение численной реализации модели методом установления и методом Зейделя.

Современная математика. Фундаментальные направления. 2023;69(3):418-429
pages 418-429 views

Аналитическое решение пространственно-временного дробного уравнения реакции-диффузии с переменными коэффициентами

Махмуд Э.И.

Аннотация

В статье решена задача неоднородного одномерного дробного дифференциального уравнения реакции-диффузии с переменными коэффициентами (1.1)-(1.2) методом разделения переменных (метод Фурье). Производная Капуто и производная Римана-Лиувилля рассматриваются во временном и пространственном направлениях соответственно. Приведено доказательство того, что найденное решение краевой задачи удовлетворяет заданным краевым условиям, и обсуждается сходимость рядов, определяющих предложенное решение.

Современная математика. Фундаментальные направления. 2023;69(3):430-444
pages 430-444 views

Нелинейные дифференциально-разностные уравнения эллиптического и параболического типа и их приложения к нелокальным задачам

Солонуха О.В.

Аннотация

В настоящем обзоре изучаются краевые задачи для нелинейных дифференциально-разностных уравнений эллиптического и параболического типов, а также связанные с ними нелинейные уравнения с нелокальными краевыми условиями. Главной особенностью рассматриваемых уравнений является то, что разностный оператор находится в главной части нелинейного оператора, содержащей старшие производные.

Современная математика. Фундаментальные направления. 2023;69(3):445-563
pages 445-563 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».