A class of anisotropic diffusion-transport equations in nondivergent form
- Authors: Hoang L.1, Ibragimov A.I.2
-
Affiliations:
- Texas Tech University
- Oil and Gas Research Institute of the RAS
- Issue: Vol 71, No 4 (2025)
- Pages: 663-685
- Section: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/374079
- DOI: https://doi.org/10.22363/2413-3639-2025-71-4-663-685
- EDN: https://elibrary.ru/MJECGF
- ID: 374079
Cite item
Full Text
Abstract
We generalize Einstein’s probabilistic method for the Brownian motion to study compressible fluids in porous media. The multi-dimensional case is considered with general probability distribution functions. By relating the expected displacement per unit time with the velocity of the fluid, we derive an anisotropic diffusion equation in non-divergence form that contains a transport term. Under the Darcy law assumption, a corresponding nonlinear partial differential equations for the density function is obtained. The classical solutions of this equation are studied, and the maximum and strong maximum principles are established. We also obtain exponential decay estimates for the solutions for all time, and particularly, their exponential convergence as time tends to infinity. Our analysis uses some transformations of the Bernstein-Cole-Hopf type which are explicitly constructed even for very general equation of state. Moreover, the Lemma of Growth in time is proved and utilized in order to achieve the above decaying estimates.
About the authors
L. Hoang
Texas Tech University
Author for correspondence.
Email: luan.hoang@ttu.edu
ORCID iD: 0000-0002-8008-4915
Scopus Author ID: 13905538000
Lubbock, USA
A. I. Ibragimov
Oil and Gas Research Institute of the RAS
Email: ilya1sergey@gmail.com
ORCID iD: 0000-0001-6827-8007
SPIN-code: 3162-9406
Scopus Author ID: 23968895600
ResearcherId: AFZ-8749-2022
Moscow, Russia
References
- Aronson D.G. The porous medium equation// В сб.: «Nonlinear diffusion problems».-Berlin-Heidelberg: Springer, 1986.- С. 1-46.- doi: 10.1007/BFb0072687.
- Aulisa E., Bloshanskaya L., Hoang L., Ibragimov A. Analysis of generalized Forchheimer flows of compressible fluids in porous media// J. Math. Phys.- 2009.- 50, № 10.- 103102.-doi: 10.1063/1.3204977.
- Barletta A. Thermal instability in a horizontal porous channel with horizontal through flow and symmetric wall heat fluxes// Transp. Porous Media. -2012.- 92, № 2.-С. 419-437.-doi: 10.1007/s11242-011-9910-y.
- Bear J. Dynamics of fluids in porous media. -New York: Dover Publications, 1988.
- Bernstein S. Sur les ´equations du calcul des variations// Ann. Sci. Ec. Norm. Sup´er.- 1912.-´ 29.-С. 431-485.
- Celik E., Hoang L. Maximum estimates for generalized Forchheimer flows in heterogeneous porous media// J. Differ. Equ. -2017.-262, № 3.-С. 2158-2195.- doi: 10.1016/j.jde.2016.10.043.
- Celik E., Hoang L., Ibragimov A., Kieu T. Fluid flows of mixed regimes in porous media// J. Math. Phys.- 2017.-58, № 2.- 023102.- doi: 10.1063/1.4976195.
- Celik E., Hoang L., Kieu T. Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media// Nonlinearity.-2018.- 31, № 8.-С. 3617-3650.-doi: 10.1088/1361- 6544/aabf05.
- Celik E., Hoang L., Kieu T. Studying a doubly nonlinear model of slightly compressible Forchheimer flows in rotating porous media// Turkish J. Math.- 2023.- 47, № 3.- С. 949-987.-doi: 10.55730/13000098.340510.55730/1300-0098.3405.
- Chadam J., Qin Y. Spatial decay estimates for flow in a porous medium// SIAM J. Math. Anal.- 1997.- 28, № 4.- С. 808-830.-doi: 10.1137/S0036141095290562.
- Cole J.D. On a quasi-linear parabolic equation occurring in aerodynamics// Quart. Appl. Math.- 1951.- С. 225-236.-doi: 10.1090/qam/42889.
- Darcy H. Les Fontaines Publiques de la Ville de Dijon. -Paris: Dalmont, 1856.
- DiBenedetto E. Degenerate parabolic equations.- New York: Springer, 1993.
- Einstein A. Uber die von der molekularkinetischen Theorie der W¨arme geforderte Bewegung von in¨ ruhenden Flu¨ssigkeiten suspendierten Teilchen// Ann. Physik. -1905.- 322, № 8.- С. 549-560.-doi: 10.1002/andp.19053220806.
- Hoang L., Ibragimov A. Structural stability of generalized Forchheimer equations for compressible fluids in porous media// Nonlinearity.- 2011.-24, № 1.- С. 1-41.-doi: 10.1088/0951-7715/24/1/001.
- Hoang L.T., Ibragimov A., Kieu T.T. A family of steady two-phase generalized Forchheimer flows and their linear stability analysis// J. Math. Phys.- 2014.- 55, № 12.-123101.-doi: 10.1063/1.4903002.
- Hoang L., Ibragimov A., Kieu T., Sobol Z. Stability of solutions to generalized Forchheimer equations of any degree// J. Math. Sci. (N.Y.). -2015.-210, № 4.- С. 476-544.- doi: 10.1007/s10958-015-2576-1.
- Hoang L., Kieu T. Global estimates for generalized Forchheimer flows of slightly compressible fluids// J. Anal. Math. -2019.-137, № 1.-С. 1-55.-doi: 10.1007/s11854-018-0064-5.
- Hoang L., Kieu T. Anisotropic flows of Forchheimer-type in porous media and their steady states// Nonlinear Anal. Real World Appl. -2025.- 84.- 104269.- doi: 10.1016/j.nonrwa.2024.104269.
- Hopf E. The partial differential equation ut+uux = μxx// Commun. Pure Appl. Math.- 1950.- 3, № 3.- С. 201-230.-doi: 10.1002/cpa.3160030302.
- Ladyˇzenskaja O.A., Solonnikov V.A., Ural’ceva N.N. Linear and quasilinear equations of parabolic type.- Providence: Am. Math. Soc., 1968.
- Landis E.M. Second-order equations of elliptic and parabolic type. -Providence: Am. Math. Soc., 1998.
- Muskat M. The flow of homogeneous fluids through porous media. -New York: McGraw-Hill, 1937.
- Payne L.E., Song J.C., Straughan B. Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity// R. Soc. Lond. Proc. Ser. A. Math. Phys. Eng. Sci. - 1999.- 455, № 1986.- С. 2173-2190.-doi: 10.1098/rspa.1999.0398.
- Payne L.E., Straughan B. Convergence and continuous dependence for the Brinkman-Forchheimer equations// Stud. Appl. Math. -1999.- 102, № 4.- С. 419-439.-doi: 10.1111/1467-9590.00116.
- Rubin Y. Transport in heterogeneous porous media: Prediction and uncertainty// Water Resour. Res.- 1991.-27, № 7.- С. 1723-1738.-doi: 10.1029/91WR00589.
- Scheidegger A.E. The physics of flow through porous media.- Toronto: University of Toronto Press, 1974.
- Straughan B. Stability and wave motion in porous media. -New York: Springer, 2008.
- V´azquez J.L. The porous medium equation.- Oxford: Clarendon Press, 2007.
- Wang F., Landau D.P. Efficient, multiple-range random walk algorithm to calculate the density of states// Phys. Rev. Lett. - 2001.- 86.- С. 2050-2053.-doi: 10.1103/PhysRevLett.86.2050.
Supplementary files

