On the differential model of sandpiles growing in a silo

Cover Page

Cite item

Full Text

Abstract

We discuss some features of a boundary value problem for a system of PDEs that describes the growth of a sandpile in a container under the action of a vertical source. In particular, we characterize the long-term behavior of the profiles, and we provide a sufficient condition on the vertical source that guarantees the convergence to the equilibrium in a finite time. We show by counterexamples that a stable configuration may not be reached in a finite time, in general, even if the source is timeindependent. Finally, we provide a complete characterization of the equilibrium profiles.

About the authors

Graziano Crasta

Sapienza Universita` di Roma

Author for correspondence.
Email: graziano.crasta@uniroma1.it
ORCID iD: 0000-0003-3673-6549
Scopus Author ID: 6701399771
ResearcherId: B-4831-2008
Roma, Italy

Annalisa Malusa

Sapienza Universita` di Roma

Email: annalisa.malusa@uniroma1.it
ORCID iD: 0000-0002-5692-1904
Scopus Author ID: 8931165700
ResearcherId: G-8227-2012
Roma, Italy

References

  1. Bouchitt´e G., Buttazzo G. Characterization of optimal shapes and masses through Monge-Kantorovich equation// J. Eur. Math. Soc.- 2001.- 3.- С. 139-168.- doi: 10.1007/s100970000027.
  2. Cannarsa P., Cardaliaguet P., Crasta G., Giorgieri E. A boundary value problem for a PDE model in mass transfer theory: representation of solutions and applications// Calc. Var. Part. Differ. Equ. - 2005.- 24, № 4.- С. 431-457.-doi: 10.1007/s00526-005-0328-7.
  3. Cannarsa P., Cardaliaguet P., Sinestrari C. On a differential model for growing sandpiles with nonregular sources// Commun. Part. Differ. Equ. -2009.- 34, № 7-9.- С. 656-675.-doi: 10.1080/03605300902909966.
  4. Crasta G., Finzi Vita S. An existence result for the sandpile problem on flat tables with walls// Netw. Heterog. Media.-2008.-3, № 4.- С. 815-830.- doi: 10.3934/nhm.2008.3.815.
  5. Crasta G., Malusa A. The distance function from the boundary in a Minkowski space// Trans. Am. Math. Soc. -2007.- 359, № 12.- С. 5725-5759.-doi: 10.2307/20161843.
  6. Crasta G., Malusa A. On a system of partial differential equations of Monge-Kantorovich type// J. Differ. Equ. - 2007.- 235, № 2.- С. 484-509.-doi: 10.1016/j.jde.2007.01.010.
  7. Crasta G., Malusa A. A variational approach to the macroscopic electrodynamics of anisotropic hard superconductors// Arch. Ration. Mech. Anal.- 2009.- 192, № 1.-С. 87-115.-doi: 10.1007/s00205-008-0125-5.
  8. Crasta G., Malusa A. A nonhomogeneous boundary value problem in mass transfer theory// Calc. Var. Part. Differ. Equ. - 2012.- 44, № 1-2.- С. 61-80.-doi: 10.1007/s00526-011-0426-7.
  9. Crasta G., Malusa A. Existence and uniqueness of solutions for a boundary value problem arising from granular matter theory// J. Differ. Equ. -2015.-259, № 8.-С. 3656-3682.-DOI: 10.1016/ j.jde.2015.04.032.
  10. De Pascale L., Jimenez C. Duality theory and optimal transport for sand piles growing in a silos// Adv. Differ. Equ. - 2015.- 20, № 9-10.-С. 859-886.-doi: 10.57262/ade/1435064516.
  11. De Pascale L., Pratelli A. Regularity properties for Monge transport density and for solutions of some shape optimization problem// Calc. Var. Part. Differ. Equ. - 2002.- 14, № 3.- С. 249-274.-doi: 10.1007/s005260100086.
  12. Prigozhin L. Variational model of sandpile growth// Eur. J. Appl. Math. -1996.- 7.- С. 225-235.-doi: 10.1017/S0956792500002321.
  13. Salsa S. Partial differential equations in action.-Milano: Springer, 2009.
  14. Santambrogio F. Absolute continuity and summability of transport densities: simpler proofs and new estimates// Calc. Var. Part. Differ. Equ. -2009.- 36, № 3.-С. 343-354.-doi: 10.1007/s00526- 009-0231-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).