On the differential model of sandpiles growing in a silo
- Авторлар: Crasta G.1, Malusa A.1
-
Мекемелер:
- Sapienza Universita` di Roma
- Шығарылым: Том 71, № 4 (2025)
- Беттер: 626-641
- Бөлім: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/374076
- DOI: https://doi.org/10.22363/2413-3639-2025-71-4-626-641
- EDN: https://elibrary.ru/MEOFVV
- ID: 374076
Дәйексөз келтіру
Толық мәтін
Аннотация
We discuss some features of a boundary value problem for a system of PDEs that describes the growth of a sandpile in a container under the action of a vertical source. In particular, we characterize the long-term behavior of the profiles, and we provide a sufficient condition on the vertical source that guarantees the convergence to the equilibrium in a finite time. We show by counterexamples that a stable configuration may not be reached in a finite time, in general, even if the source is timeindependent. Finally, we provide a complete characterization of the equilibrium profiles.
Авторлар туралы
Graziano Crasta
Sapienza Universita` di Roma
Хат алмасуға жауапты Автор.
Email: graziano.crasta@uniroma1.it
ORCID iD: 0000-0003-3673-6549
Scopus Author ID: 6701399771
ResearcherId: B-4831-2008
Roma, Italy
Annalisa Malusa
Sapienza Universita` di Roma
Email: annalisa.malusa@uniroma1.it
ORCID iD: 0000-0002-5692-1904
Scopus Author ID: 8931165700
ResearcherId: G-8227-2012
Roma, Italy
Әдебиет тізімі
- Bouchitt´e G., Buttazzo G. Characterization of optimal shapes and masses through Monge-Kantorovich equation// J. Eur. Math. Soc.- 2001.- 3.- С. 139-168.- doi: 10.1007/s100970000027.
- Cannarsa P., Cardaliaguet P., Crasta G., Giorgieri E. A boundary value problem for a PDE model in mass transfer theory: representation of solutions and applications// Calc. Var. Part. Differ. Equ. - 2005.- 24, № 4.- С. 431-457.-doi: 10.1007/s00526-005-0328-7.
- Cannarsa P., Cardaliaguet P., Sinestrari C. On a differential model for growing sandpiles with nonregular sources// Commun. Part. Differ. Equ. -2009.- 34, № 7-9.- С. 656-675.-doi: 10.1080/03605300902909966.
- Crasta G., Finzi Vita S. An existence result for the sandpile problem on flat tables with walls// Netw. Heterog. Media.-2008.-3, № 4.- С. 815-830.- doi: 10.3934/nhm.2008.3.815.
- Crasta G., Malusa A. The distance function from the boundary in a Minkowski space// Trans. Am. Math. Soc. -2007.- 359, № 12.- С. 5725-5759.-doi: 10.2307/20161843.
- Crasta G., Malusa A. On a system of partial differential equations of Monge-Kantorovich type// J. Differ. Equ. - 2007.- 235, № 2.- С. 484-509.-doi: 10.1016/j.jde.2007.01.010.
- Crasta G., Malusa A. A variational approach to the macroscopic electrodynamics of anisotropic hard superconductors// Arch. Ration. Mech. Anal.- 2009.- 192, № 1.-С. 87-115.-doi: 10.1007/s00205-008-0125-5.
- Crasta G., Malusa A. A nonhomogeneous boundary value problem in mass transfer theory// Calc. Var. Part. Differ. Equ. - 2012.- 44, № 1-2.- С. 61-80.-doi: 10.1007/s00526-011-0426-7.
- Crasta G., Malusa A. Existence and uniqueness of solutions for a boundary value problem arising from granular matter theory// J. Differ. Equ. -2015.-259, № 8.-С. 3656-3682.-DOI: 10.1016/ j.jde.2015.04.032.
- De Pascale L., Jimenez C. Duality theory and optimal transport for sand piles growing in a silos// Adv. Differ. Equ. - 2015.- 20, № 9-10.-С. 859-886.-doi: 10.57262/ade/1435064516.
- De Pascale L., Pratelli A. Regularity properties for Monge transport density and for solutions of some shape optimization problem// Calc. Var. Part. Differ. Equ. - 2002.- 14, № 3.- С. 249-274.-doi: 10.1007/s005260100086.
- Prigozhin L. Variational model of sandpile growth// Eur. J. Appl. Math. -1996.- 7.- С. 225-235.-doi: 10.1017/S0956792500002321.
- Salsa S. Partial differential equations in action.-Milano: Springer, 2009.
- Santambrogio F. Absolute continuity and summability of transport densities: simpler proofs and new estimates// Calc. Var. Part. Differ. Equ. -2009.- 36, № 3.-С. 343-354.-doi: 10.1007/s00526- 009-0231-8.
Қосымша файлдар

