Second-order difference scheme for hyperbolic equations with unbounded delay
- Authors: Ashyralyev A.1,2,3
-
Affiliations:
- Bahcesehir University
- RUDN University
- Institute of Mathematics and Mathematical Modeling
- Issue: Vol 71, No 4 (2025)
- Pages: 547-561
- Section: Articles
- URL: https://journals.rcsi.science/2413-3639/article/view/374072
- DOI: https://doi.org/10.22363/2413-3639-2025-71-4-547-561
- EDN: https://elibrary.ru/MADFXS
- ID: 374072
Cite item
Full Text
Abstract
The present paper is devoted to the study the initial value problem for the hyperbolic equation with unbounded time delay term \( \begin{equation*}
\begin{cases}
\dfrac{d^{2}v(t)}{dt^{2}}+A^{2}v(t)=a\left( \dfrac{dv(t-\omega )}{dt}
+Av(t-\omega )\right) +f(t), & t>0, \\
v(t)=\varphi (t), & -\omega \leq t\leq 0
\end{cases}
\end{equation*} \) in a Hilbert space H with a self-adjoint positive definite operator A. The second order of accuracy difference scheme for the numerical solution of the differential problem is presented. The main theorem on stability estimates for the solutions of this difference scheme is established. In practice, the stability estimates for solutions of four problems for hyperbolic difference equations with time delay are proved.
About the authors
A. Ashyralyev
Bahcesehir University; RUDN University; Institute of Mathematics and Mathematical Modeling
Author for correspondence.
Email: allaberen.ashyralyev@bau.edu.tr
ORCID iD: 0000-0002-4153-6624
Scopus Author ID: 6602401828
ResearcherId: K-4377-2017
Istanbul, Turkiye; Moscow, Russia; Almaty, Kazakhstan
References
- Ашыралыев А. Об устойчивости гиперболических уравнений с неограниченным запаздыванием// Докл. РАН. - 2025.- 524.-С. 51-55.- doi: 10.7868/S3034504925040085.
- Васильев В.В., Крейн С.Г., Пискарев С.И. Полугруппы операторов, косинус оператор-функции и линейные дифференциальные уравнения// Итоги науки и техн. Сер. Мат. анал.-1990.- 28.- С. 87-202.
- Власов В.В. Research of operator models arising in hereditary mechanics and thermophysics// Тезисы межд. конф. «Математическая физика, динамические системы, бесконечномерный анализ».- Долгопрудный: МФТИ, 2019.
- Власов В.В., Раутиан Н.А. Спектральный анализ функционально-дифференциальных операторов.-М.: МАКС Пресс, 2016.
- Пискарев С.И. Об устойчивости разностных схем в задачах Коши с почти периодическими решениями// Дифф. уравн.- 1984.- 20, № 4.- С. 689-695.
- Пискарев С.И. Принципы методов дискретизации, III// Докл. Акуст. ин-та. РАН. - 1986.- 3410.- С. 1-87.
- Скубачевский А.Л. К задаче об успокоении системы управления с последействием// Докл. РАН. - 1994.-335, № 2.-С. 157-160.
- Соболевский П.Е. Разностные методы решения дифференциальных уравнений.- Воронеж: ВГУ, 1975.
- Соболевский П.Е., Чеботарева Л.М. Приближенное решение методом прямых задачи Коши для абстрактного гиперболического уравнения// Изв. вузов. Сер. Мат.-1977.-5. -С. 103-116.
- Ashyralyev A., Agirseven D. Bounded solutions of nonlinear hyperbolic equations with time delay// Electron. J. Differ. Equ. -2018.- 2018, № 21.- С. 1-15.
- Ashyralyev A., Akat M. An approximation of stochastic hyperbolic equations: case with Wiener process// Math. Methods Appl. Sci.- 2013.- 36, № 9.- С. 1095-1106.- doi: 10.1002/mma.2666.
- Ashyralyev A., Akca H. Stability estimates of difference schemes for neutral delay differential equations// Nonlinear Anal.- 2001.- 44.-С. 443-452.-doi: 10.1016/S0362-546X(99)00270-9.
- Ashyralyev A., Fattorini H.O. On uniform difference schemes for second order singular perturbation problems in Banach spaces// SIAM J. Math. Anal. -1992.- 23, № 1.-С. 29-54.- doi: 10.1137/052300.
- Ashyralyev A., Pastor J., Piskarev S., Yurtsever H.A. Second order equations in functional spaces: qualitative and discrete well-posedness// Abstr. Appl. Anal. -2015.-2015.- 948321.- DOI: 10.1155/ 2015/948321.
- Ashyralyev A., Sarsanbi A. Well-posedness of a parabolic equation with involution// Numer. Funct. Anal. Optim. -2017.-38, № 10.- С. 1295-1305.- doi: 10.1080/01630563.2017.1316997.
- Ashyralyev A., Sobolevskii P.E. A note on the difference schemes for hyperbolic equations// Abstr. Appl. Anal. -2001.-6, № 2.-С. 63-70.- doi: 10.1155/S1085337501000501.
- Ashyralyev A., Sobolevskii P.E. New difference schemes for partial differential equations.- Basel-Boston- Berlin: Birkha¨user, 2004.
- Ashyralyev A., Sobolevskii P.E. Two new approaches for construction of the high order of accuracy difference schemes for hyperbolic differential equations// Discrete Dyn. Nat. Soc. -2005.- 2005, № 2.- С. 183-213.-doi: 10.1155/DDNS.2005.183.
- Ashyralyev A., Vlasov V.V., Ashyralyyev C. On the stability of hyperbolic difference equations with unbounded delay term// Bol. Soc. Mat. Mexicana (3). -2023.- 29, № 2.-С. 27-38.- DOI: 10.1007/ s40590-023-00498-z.
- Bellman R., Cooke K. Differential-difference equations.-New York: Academic Press, 1963.
- Cahlon B., Schmidt D. Stability criteria for certain second-order delay differential equations with mixed coefficients// J. Comput. Appl. Math.- 2004.- 170.-С. 79-102.-doi: 10.1016/j.cam.2003.12.043.
- Chi H., Poorkarimi H., Wiener J., Shah S.M. On the exponential growth of solutions to non-linear hyperbolic equations// Int. J. Math. Sci. -1989.-12.-С. 539-546.-doi: 10.1155/S0161171289000670.
- Driver R.D. Ordinary and delay differential equations.-Berlin: Springer, 1977.
- Driver R.D. Exponential decay in some linear delay differential equations// Am. Math. Monthly.- 1978.- 85, № 9.- С. 757-760.-doi: 10.1080/00029890.1978.11994695.
- El’sgol’ts L.E., Norkin S.B. Introduction to the theory and application of differential equations with deviating arguments.- New York: Academic Press, 1973.
- Fattorini H.O. Second order linear differential equations in Banach spaces.- Amsterdam-New York- Oxford: North-Holland, 1985.
- Goldstein J.A. Semigroups of linear operators and applications.-New York: Oxford University Press, 1985.
- Hale J.K., Verduyn Lunel S.M. Introduction to functional differential equations.-Berlin: Springer, 1993.
- Kolmanovski V., Myshkis A. Applied theory of functional differential equations.-Dordrecht: Kluwer Academic, 1992.
- Krein S.G. Linear differential equations in Banach space.-Providence: Am. Math. Soc., 1971.
- Mohanty R.K. An operator splitting method for an unconditionally stable difference scheme for a linear hyperbolic equation with variable coefficients in two space dimensions// Appl. Math. Comput. - 2004.- 152, № 3.-С. 799-806.-doi: 10.1016/S0096-3003(03)00595-2.
- Mohanty R.K. An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients// Appl. Math. Comput.- 2005.- 165, № 1.- С. 229-236.-doi: 10.1016/j.amc.2004.07.002.
- Mohanty R.K. An operator splitting technique for an unconditionally stable difference method for a linear three space dimensional hyperbolic equation with variable coefficients// Appl. Math. Comput. - 2005.- 162, № 2.-С. 549-557.-doi: 10.1016/j.amc.2003.12.135.
- Poorkarimi H., Wiener J. Bounded solutions of nonlinear hyperbolic equations with delay// В сб.: «Proc. VII Int. Conf. Nonlinear Analysis and Applications».- New York-Basel: Marcel Dekker, 1987.- С. 471-478.
- Shah S.M., Poorkarimi H., Wiener J. Bounded solutions of retarded nonlinear hyperbolic equations// Bull. Allahabad Math. Soc. -1986.- 1. -С. 1-14.
- Vasil’ev V.V., Krein S.G., Piskarev S. Operator semigroups, cosine operator functions, and linear differential equations// J. Soviet Math. -1991.- 54, № 4.-С. 1042-1129.
- Wiener J. Generalized solutions of functional differential equations.- Singapore: World Scientific, 1993.
- Yenic¸erio˘glu A.F. The behavior of solutions of second order delay differential equations// J. Math. Anal. Appl. - 2007.- 332, № 2. -С. 1278-1290.-doi: 10.1016/j.jmaa.2006.10.069.
- Yenic¸erio˘glu A.F., Yalcinbas S. On the stability of the second-order delay differential equations with variable coefficients// Appl. Math. Comput. - 2004.- 152, № 3.-С. 667-673.-doi: 10.1016/S00963003(03)00584-8.
Supplementary files

