On Ellipticity of Hyperelastic Models Based on Experimental Data
- Authors: Salamatova VY.1,2, Vasilevskii Y.V3,1,2
-
Affiliations:
- Moscow Institute of Physics and Technology (State University)
- Sechenov First Moscow State Medical University
- Institute of Numerical Mathematics of the Russian Academy of Sciences
- Issue: Vol 63, No 3 (2017): Differential and Functional Differential Equations
- Pages: 504-515
- Section: New Results
- URL: https://journals.rcsi.science/2413-3639/article/view/347263
- DOI: https://doi.org/10.22363/2413-3639-2017-63-3-504-515
- ID: 347263
Cite item
Full Text
Abstract
About the authors
V Yu Salamatova
Moscow Institute of Physics and Technology (State University) ; Sechenov First Moscow State Medical University
Email: salamatova@gmail.com
9 Institutskiy per., 141701 Moscow Region, Russia; 2 build. 4 Bol’shaya Pirogovskaya st., 119991 Moscow, Russia
Yu V Vasilevskii
Institute of Numerical Mathematics of the Russian Academy of Sciences ; Moscow Institute of Physics and Technology (State University) ; Sechenov First Moscow State Medical University
Email: yuri.vassilevski@gmail.com
8 Gubkina st., 119333 Moscow, Russia; 9 Institutskiy per., 141701 Moscow Region, Russia;2 build. 4 Bol’shaya Pirogovskaya st., 119991 Moscow, Russia
References
- Лурье А. И. Нелинейная теория упругости. - М.: Наука, 1980.
- Сьярле Ф. Математическая теория упругости. - М.: Мир, 1992.
- Тыртышников Е. Е. Матричный анализ и линейная алгебра. - М.: Физматлит, 2007.
- Трусделл К. Первоначальный курс рациональной механики сплошных сред. - М.: Мир, 1975.
- Criscione J. C. Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing// В сб.: «The Rational Spirit in Modern Continuum Mechanics». - Dordrecht: Springer, 2004. - С. 197-215.
- Criscione J. C., Humphrey J. D., Douglas A. S., Hunter W. C. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity// J. Mech. Phys. Solids. - 2000. - 48, № 12. - С. 2445-2465.
- Criscione J. C., McCulloch A. D., Hunter W. C. Constitutive framework optimized for myocardium and other high-strain, laminar materials with one fiber family// J. Mech. Phys. Solids. - 2002. - 50, № 8. - С. 1681-1702.
- Criscione J. C., Sacks M. S., Hunter W. C. Experimentally tractable, pseudo-elastic constitutive law for biomembranes: I. Theory// J. Biomech. Eng. - 2003. - 125, № 1. - С. 94-99.
- Criscione J. C., Sacks M. S., Hunter W. C. Experimentally tractable, pseudo-elastic constitutive law for biomembranes: II. Application// J. Biomech. Eng. - 2003. - 125, № 1. - С. 100-105.
- Freed A. D., Srinivasa A. R. Logarithmic strain and its material derivative for a QR decomposition of the deformation gradient// Acta Mech. - 2015. - 226, № 8. - С. 2645-2670.
- Hayes M. Static implications of the strong-ellipticity condition// Arch. Ration. Mech. Anal. - 1969. - 33, № 3. - С. 181-191.
- Holzapfel G. A. Biomechanics of soft tissue// Handb. Mater. Behav. Models. - 2001. - 3, № 1. - С. 1049- 1063.
- Humphrey J. D. Computer methods in membrane biomechanics// Comput. Methods Biomech. Biomed. Eng. - 1998. - 1, № 3. - С. 171-210.
- Knowles J. K., Sternberg E. On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics// J. Elasticity. - 1978. - 8, № 4. - С. 329-379.
- Kotiya A. A. Mechanical characterisation and structural analysis of normal and remodeled cardiovascular soft tissue// Doctoral diss. - Texas A&M University, 2008.
- Martins P., Natal Jorge R. M., Ferreira A. J. M. A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues// Strain. - 2006. - 42, № 3. - С. 135-147.
- Merodio J., Ogden R. W. Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation// Int. J. Solids Structures. - 2003. - 40, № 18. - С. 4707-4727.
- Rivlin R. S., Saunders D. W. Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber// Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. - 1951. - 243, № 865. - С. 251-288.
- Sendova T., Walton J. R. On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain// Int. J. Nonlinear Mech. - 2005. - 40, № 2. - С. 195-212.
- Srinivasa A. R. On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials// Internat. J. Engrg. Sci. - 2012. - 60.- С. 1-12.
Supplementary files

