Carleman’s Formula for Solutions of the Generalized Cauchy-Riemann System in Multidimensional Spatial Domain

Capa

Citar

Texto integral

Resumo

In this paper, we consider the restoration problem for solutions of the generalized Cauchy- Riemann system in a multidimensional spatial domain using their values on a piece of the boundary of the domain, i. e., the Cauchy problem. We construct an approximate solution of this problem based on the Carleman matrix method.

Sobre autores

E Sattorov

Samarkand State University

Email: Sattorov-e@rambler.ru
Samarkand, Uzbekistan

F Ermamatova

Samarkand State University

Email: Fotima-e@mail.ru
Samarkand, Uzbekistan

Bibliografia

  1. Адамар Ж. Задача Коши для линейных уравнений с частными производными гиперболического типа. - М.: Наука, 1978.
  2. Айзенберг Л. А. Формулы Карлемана в комплексном анализе. Первые приложения. - Новосибирск: Наука, 1990.
  3. Айзенберг Л. А., Тарханов Н. Н. Абстрактная формула Карлемана// Докл. АН СССР. - 1988. - 298, № 6. - С. 1292-1296.
  4. Берс Л., Джон Ф., Шехтер М. Уравнения с частными производными. - М.: Мир, 1966.
  5. Векуа И. Н. Обобщенные аналитические функции. - М.: Физматгиз, 1988.
  6. Владимиров В. С., Волович И. В. Суперанализ I. Дифференциальное исчисление// Теор. мат. физ. - 1984. - 59, № 1. - С. 3-27.
  7. Владимиров В. С., Волович И. В. Суперанализ II. Интегральное исчисление// Теор. мат. физ. - 1984. - 60, № 2. - С. 169-198.
  8. Джарбашян М. М. Интегральные преобразования и представления функции в комплексной области. - М.: Наука, 1966.
  9. Иванов В. К. Задача Коши для уравнения Лапласа в бесконечной полосе// Дифф. уравн. - 1965. - 1, № 1. - С. 131-136.
  10. Ишанкулов Т. И. О возможности обобщенно-аналитического продолжения в область функций, заданных на куске ее границы// Сиб. мат. ж. - 2000. - 41, № 6. - С. 1350-1356.
  11. Лаврентьев М. М. О задаче Коши для линейных эллиптических уравнений второго порядка// Докл. АН СССР. - 1957. - 112, № 2. - С. 195-197.
  12. Лаврентьев М. М. О некоторых некорректных задачах математической физики. - Новосибирск: ВЦ СО АН СССР, 1962.
  13. Махмудов О. И. Задача Коши для системы уравнений теории упругости и термоупругости в пространстве// Изв. вузов. Сер. Мат. - 2004. - 501, № 2. - С. 43-53.
  14. Мергелян С. Н. Гармоническая аппроксимация и приближенное решение задачи Коши для уравнения Лапласа// Усп. мат. наук. - 1956. - 11, № 5. - С. 3-26.
  15. Никифоров Л. Ф., Уваров В. Б. Основы теории специальных функций. - М.: Наука, 1974.
  16. Оболашвили Е. И. Пространственный аналог обобщенных аналитических функций// Сообщ. АН ГССР. - 1974. - 73, № 1. - С. 20-24.
  17. Оболашвили Е. И. Обобщенная система Коши-Римана в многомерном евклидовом пространстве// Сб. докл. Межд. конф. по компл. анализу и его применениям к уравн. с частн. производными (Галле, ГДР, 18-24 октября 1976 г.). - Галле, 1977. - С. 36-39.
  18. Оболашвили Е. И. Обобщенная система Коши-Римана в многомерном пространстве// Тр. Тбилис. мат. ин-та. - 1978. - 58. - C. 168-173.
  19. Сатторов Э. Н. Регуляризация решения задачи Коши для обобщенной системы Моисила-Теодореску// Дифф. уравн. - 2008. - 44, № 8. - С. 1100-1110.
  20. Сатторов Э. Н. О продолжении решений обобщенной системы Коши-Римана в пространстве// Мат. заметки. - 2009. - 85, № 5. - С. 768-781.
  21. Сатторов Э. Н. Регуляризация решения задачи Коши для системы уравнений Максвелла в бесконечной области// Мат. заметки. - 2009. - 86, № 6. - С. 445-455.
  22. Сатторов Э. Н. О восстановлении решений обобщенной системы Моисила-Теодореску в пространственной области по их значениям на куске границы// Изв. вузов. Сер. Мат. - 2011. - 1. - С. 72-84.
  23. Сатторов Э. Н., Мардонов Дж. А. Задача Коши для системы уравнений Максвелла// Сиб. мат. ж. - 2003. - 44, № 4. - С. 851-861.
  24. Стейн И., Вейс Г. Введение в гармонический анализ на евклидовых пространствах. - М.: Мир, 1974.
  25. Тарханов Н. Н. О матрице Карлемана для эллиптических систем// Докл. АН СССР. - 1985. - 284, № 2. - С. 294-297.
  26. Тихонов А. Н. О решении некорректно поставленных задач и методе регуляризации// Докл. АН СССР. - 1963. - 151, № 3. - С. 501-504.
  27. Трикоми Ф. Лекции по уравнениям в частных производных. - М.: ИЛ, 1957.
  28. Ярмухамедов Ш. О задаче Коши для уравнения Лапласа// Докл. АН СССР. - 1977. - 235, № 2. - С. 281-283.
  29. Ярмухамедов Ш. Об аналитическом продолжении голоморфного вектора по его граничным значениям на куске границы// Изв. АН УзССР. Сер. физ.-мат. наук. - 1980. - 6. - С. 34-40.
  30. Ярмухамедов Ш. О продолжении решения уравнения Гельмгольца// Докл. РАН. - 1997. - 357, № 3. - С. 320-323.
  31. Ярмухаммедов Ш. Функция Карлемана и задача Коши для уравнения Лапласа// Сиб. мат. ж. - 2004. - 45, № 3. - С. 702-719.
  32. Brackx F., Delanghe K., Sommen F. Clifford analysis. - Boston-London-Melbourne: Pitman, 1982.
  33. Makhmudov O., Niyozov I., Tarkhanov N. The Cauchy problem of couple-stress elasticity// Contemp. Math. - 2008. - 455. - С. 297-310.
  34. Tarkhanov N. N. Cauchy problem for solutions of elliptic equations. - Berlin: Akademie-Verlag, 1995.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».