On ellipticity of operators with shear mappings

Cover Page

Cite item

Full Text

Abstract

The nonlocal boundary value problems are considered, in which the main operator and the operators in the boundary conditions include the differential operators and twisting operators. The de nition of the trajectory symbols for this class of problems is given. We show that the elliptic problems de ne the Fredholm operators in the corresponding Sobolev spaces. The ellipticity condition of such nonlocal boundary value problem is given.

About the authors

A. V. Boltachev

RUDN University

Author for correspondence.
Email: boltachevandrew@gmail.com
Moscow, Russia

References

  1. Агранович М. C. Соболевские пространства, их обобщения и эллиптические задачи в областях с гладкой и липшицевой границей. - М.: МЦНМО, 2013.
  2. Балдаре А., Назайкинский В. Е., Савин А. Ю., Шроэ Э. C∗-алгебры задач сопряжения и эллиптические краевые задачи с операторами сдвига// Мат. заметки. - 2022. - 111, № 5. - С. 692-716.
  3. Жуйков К. Н., Савин А. Ю. Эта-инвариант эллиптических краевых задач с параметром// Соврем. мат. Фундам. направл. - 2023. - 69, № 4. - С. 600-621.
  4. Россовский Л. Е. Эллиптические функционально-дифференциальные уравнения со сжатием и растяжением аргументов неизвестной функции// Соврем. мат. Фундам. направл. - 2014. - 54. - С. 3-138.
  5. Савин А. Ю., Стернин Б. Ю. Об индексе эллиптических операторов для группы растяжений// Мат. сб. - 2011. - 202, № 10. - С. 99-130.
  6. Тасевич А. Л. Гладкость обобщенных решений задачи Дирихле для сильно эллиптических функционально-дифференциальных уравнений с ортотропными сжатиями на границе соседних подобластей// Соврем. мат. Фундам. направл. - 2023. - 69, № 1. - С. 152-165.
  7. Якубович В. А., Старжинский В. М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. - М.: Наука, 1972.
  8. Antonevich A., Belousov M., Lebedev A. Functional differential equations: II. C∗-applications. Part 2: Equations with discontinuous coe cients and boundary value problems. - Harlow: Longman, 1998.
  9. Antonevich A. B., Lebedev A. V. Functional equations and functional operator equations. A C∗-algebraic approach// В сб.: «Proc. SPb. Math. Soc. Vol. VI». - Providence: Am. Math. Soc., 2000. - С. 25-116.
  10. Baldare A., Nazaikinskii V. E., Savin A. Yu., Schrohe E. C∗-algebras of transmission problems and elliptic boundary value problems with shift operators// Math. Notes. - 2022. - 111, № 5. - С. 701-721.
  11. Boltachev A. V., Savin A. Yu. Trajectory symbols and the Fredholm property of boundary value problems for differential operators with shifts// Russ. J. Math. Phys. - 2023. - 30. - С. 135-151. Contemporary Mathematics. Fundamental Directions, 2023, Vol. 69, No. 4, 565-577 575
  12. Boutet de Monvel L. Boundary problems for pseudodifferential operators// Acta Math. - 1971. - 126.- С. 11-51.
  13. Connes A. Noncommutative geometry. - San Diego: Academic Press, 1994.
  14. H¨ormander L. The analysis of linear partial differential operators. III. - Berlin-Heidelberg-New York- Tokyo: Springer, 1985.
  15. Onanov G. G., Skubachevskii A. L. Nonlocal problems in the mechanics of three-layer shells// Math. Model. Nat. Phenom. - 2017. - 12, № 6. - С. 192-207.
  16. Onanov G. G., Tsvetkov E. L. On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory// Russ. J. Math. Phys. - 1995. - 3, № 4. - С. 491-500.
  17. Rempel S., Schulze B.-W. Index theory of elliptic boundary problems. - Berlin: Akademie, 1982.
  18. Savin A. Yu., Sternin B. Yu. Elliptic differential dilation-contraction problems on manifolds with boundary// Differ. Equ. - 2017. - 53, № 5. - С. 665-676.
  19. Schrohe E. A short introduction to Boutet de Monvel’s calculus// В сб.: «Approaches to singular analysis». - Basel: Birkh¨auser, 2001. - С. 85-116.
  20. Skubachevskii A. L. Elliptic functional differential equations and applications. - Basel-Boston-Berlin: Birkha¨user, 1997.
  21. Skubachevskii A. L. Boundary-value problems for elliptic functional-differential equations and their applications// Russ. Math. Surv. - 2016. - 71, № 5. - С. 801-906.
  22. Taubes C. H. Gauge theory on asymptotically periodic 4-manifolds// J. Differ. Geom. - 1987. - 25.- С. 363-430.
  23. Van der Pol B., Strutt II M. J. O. On the stability of the solutions of Mathieu’s equation// Philos. Magazine - 1928. - 5, № 27. - С. 18-38.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».