Trinitroaromatic explosives: Modern application, toxicological characterization, and methods of determination

Cover Page

Cite item

Full Text

Abstract

Explosives such as tetryl and picric acid, which were common in the past, now have lost their combat relevance. However, they are often used for peaceful purposes individually and in combination with other trinitroaromatic compounds (e.g., trinitrotoluene). As a result of their use, environmental pollution occurs, followed by intoxication of plants, animals, and people. Cases of explosive poisoning during their production are also described.

The symptoms of poisoning include both of general disorders and specific phenomena such as skin staining, impaired physiological efficiency of NADPh-dependent enzymes, genotoxicity, and immunotoxicity.

Previous scientific studies established a trend toward the development of chemical-analytical probes. Various options for the sensor surface of the device and methods for detecting compounds are considered. To determine the explosives, ion mobility spectrometry is widely used, which is very rare for the chemical–toxicological analysis of other groups of compounds.

Simultaneously, methods commonly used in the analysis of narcotic and psychotropic substances (gas chromatography/ combination of high-performance liquid chromatography and mass spectrometry methods) are also applicable to determine trinitroaromatic explosives. However, the presence of nitro groups in their structure complicates such an analysis. This problem can be resolved by injecting cold samples directly to the column.

Despite the availability of various developed techniques and methods, the possibility of their application to study biological matrices remains insufficient.

Therefore, further studies of the chemical–toxicological nature should be conducted to establish the optimal conditions for extracting the substances in question, the parameters of instrumental analysis, and the possibility of storing samples and for solving other problems of forensic medical examination.

About the authors

Norayr G. Pogosyan

Kursk State Medical University

Author for correspondence.
Email: nulla1@ya.ru
ORCID iD: 0000-0003-0276-1711
SPIN-code: 4214-2739
Russian Federation, Kursk

Vladimir K. Shormanov

Kursk State Medical University

Email: R-WLADIMIR@yandex.ru
ORCID iD: 0000-0001-8872-0691
SPIN-code: 9160-9708

Dr. Sci. (Pharm.), Professor

Russian Federation, Kursk

Lekso L. Kvachakhiya

Kursk State Medical University

Email: lekso82@yandex.ru
ORCID iD: 0000-0001-5899-0420
SPIN-code: 8108-0811

Dr. Sci. (Pharm.), Assistant Professor

Russian Federation, Kursk

Vladimir A. Omelchenko

Forensic Expert Center of the Main Directorate of the Ministry of Internal Affairs of Russia for the Krasnodar Territory

Email: eku_adis@krn.mvd.ru
ORCID iD: 0000-0002-0504-3478
SPIN-code: 3400-2710

Cand. Sci. (Pharm.)

Russian Federation, Krasnodar

References

  1. Snetkov EA, Zhabbarova MV. The history of explosives. Innovative Sci Res: Online edition. 2021;(2-1):6–22. (In Russ). doi: 10.5281/zenodo.4567917
  2. Khrapkovskiy GM, Nikolayeva EV, Shamov AG, Mikhaylov OV. 2,4,6-Trinitrotoluene and the mechanism of its gas-phase thermal destruction. Herald Technolog University. 2018;21(1):10–15. (In Russ).
  3. Mohan JM, Amreen K, Kulkarni MB. Optimized ink jetted paper device for electroanalytical detection of picric acid. Colloids Surf B Biointerfaces. 2021;(208):112056. doi: 10.1016/j.colsurfb.2021.112056
  4. Naryzhnyi SY, Kozlov AS, Dolmatov, VY, et al. Effect of modification of tetryl detonation nanodiamonds on combustion of model paste-like propellants. Combustion Explosion Shock Waves. 2021;57(6):678–684. doi: 10.1134/S001050822106006X
  5. Panich AM, Shames AI, Mogilyansky D, et al. Detonation nanodiamonds fabricated from tetryl: Synthesis, NMR, EPR and XRD study. Diamond Related Materials. 2020;(108):107918. doi: 10.1016/j.diamond.2020.107918
  6. Dolmatov VY, Dorokhov AO, Burkat GK, et al. Electrochemical anodic oxidation of aluminum in the presence of a diamond blend obtained by detonation of tetryl. J Superhard Materials. 2022;44(1):29–36. doi: 10.3103/S1063457622010026
  7. Rudomazin VV, Telegina EA, Tsvetkova EA. Control of the turnover of industrial explosive materials and their need for the mining industry. Uspekhi v khimii i khimicheskoy tekhnologii. 2021;XXXV(12):134–138. (In Russ).
  8. Ilyushchenko AF, Petyushik EE, Rak AL, et al. Application of high-energy explosive materials in industry: A reference manual. Ed. by A.F. Ilyushenko. Minsk: Belorusskaya navuka; 2017. 283 p. (In Russ).
  9. Ostapenko YN, Fedorenko VV, Evtyukov AN, et al. Сase of successful therapy of the patient with acute trotyl poisoning by hyperbaric oxygenation as a method of choice. Med Extreme Situations. 2011;(4):91–95. (In Russ).
  10. Penning TM, Su AL, El-Bayoumy K. Nitroreduction: A critical metabolic pathway for drugs, environmental pollutants, and explosives. Chemical Res Toxicol. 2022;35(10):1747–1765. doi: 10.1021/acs.chemrestox.2c00175
  11. Myers SR, Spinnato JA. Tissue distribution and elimination of N-methyl-N-2,4,6-tetranitroaniline (tetryl) in rats. Arch Toxicol. 2007;81(12):841–848. doi: 10.1007/s00204-007-0220-7
  12. Miliukiene V, Čėnas N. Cytotoxicity of nitroaromatic explosives and their biodegradation products in mice splenocytes: Implications for their immunotoxicity. Zeitschrift Naturforschung C J Biosci. 2008;63(7-8):519–525. doi: 10.1515/znc-2008-7-809
  13. Troup HB. Clinical effects of tetryl (CE powder). Br J Indust Med. 1946;3(1):20–23. doi: 10.1136/oem.3.1.20
  14. Williams H. Contact dermatitis within the explosives industry: A case report. Allergies in the workplace. Curr Allergy Clin Immunol. 2007;20(3):151–154.
  15. Yang H, Li H, Liu L, et al. Molecular simulation studies on the interactions of 2,4,6-trinitrotoluene and its metabolites with lipid membranes. J Physical Chemistry. 2019;123(30):6481–6491. doi: 10.1021/acs.jpcb.9b03033
  16. Alfaraj WA, McMillan B, Ducatman AM, Werntz CL. Tetryl exposure: Forgotten hazards of antique munitions. Ann Occup Environ Med. 2016;(28):20. doi: 10.1186/s40557-016-0102-7
  17. Stanley JK, Perkins EJ, Habib T, et al. The good, the bad, and the toxic: Approaching hormesis in Daphnia magna exposed to an energetic compound. Environ Sci Technol. 2013;47(16):9424–9433. doi: 10.1021/es401115q
  18. Gong P, Guan X, Inouye LS, et al. Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida. Environ Sci Technol. 2007;41(23):8195–8202. doi: 10.1021/es0716352
  19. Marshall M, Oxley JC, editors. Aspects of explosives detection. 1 ed. Amsterdam: Elsevier; 2008. 302 p.
  20. Patent RUS № 2736785/20.11.2020. Byul. № 32. Fedorkov AN, Fedorkova EA, Kozlov AS, Vinogradova TA. Odorological additive of the smell simulator of cyclic and heterocyclic nitro compounds. (In Russ). Available from: https://patenton.ru/patent/RU2736785C1. Accessed: 13.03.2023.
  21. Modafferi D. The interaction of tetryl, a nitroaromatic explosive, with bacterial reaction centres [Master’s thesis]. Quebec (Canada): Concordia University; 2018.
  22. Kikhtenko AV, Yeliseyev KV. Detection of explosive objects: Hardware support of anti-terrorist services. Rossiiskii khimicheskii zhurnal. 2005;XLIX(4):132–137. (In Russ).
  23. Prabu HG, Talawar MB, Mukundan T, Asthana SN. Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials. Combust Explos Shock Waves. 2011;47(1):87–95. doi: 10.1134/S0010508211010126
  24. Patent RUS № 141655/10.06.2014. Byul. № 16. Tretyakov VI, Lobacheva GK, Pavlichenko NV, et al. Device for remote detection of explosives using indicator solutions. (In Russ). Available from: https://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=141655&ki=PM. Accessed: 15.03.2023.
  25. Demircioğlu T, Kaplan M, Tezgin E. A sensitive colorimetric nanoprobe based on gold nanoparticles functionalized with thiram fungicide for determination of TNT and tetryl. Microchemical J. 2022;176(6):107251. doi: 10.1016/j.microc.2022.107251
  26. Dasary SS, Senapati D, Singh AK, et al. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle. ACS Appl Mater Interfaces. 2010;2(12):3455–3460. doi: 10.1021/am1005139
  27. Peveler WJ, Roldan A, Hollingsworth N, et al. Multichannel detection and differentiation of explosives with a quantum dot array. ACS Nano. 2016;10(1):1139–1146. doi: 10.1021/acsnano.5b06433
  28. Koç ÖK, Üzer A, Apak R. High quantum yield nitrogen-doped carbon quantum dot-based fluorescent probes for selective sensing of 2,4,6-trinitrotoluene. ACS Applied Nano Materials. 2022;5(4):5868–5881. doi: 10.1021/acsanm.2c00717
  29. Salinas Y, Climent E, Martínez-Máñez R, et al. Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chem Commun (Camb). 2011;47(43):11885–11887. doi: 10.1039/C1CC14877J
  30. Ma Y, Wang S, Wang L. Nanomaterials for luminescence detection of nitroaromatic explosives. TrAC Trends Analytical Chemistry. 2015;(65):13–21. doi: 10.1016/j.trac.2014.09.007
  31. Venkatramaiah N, Pereira CF, Mendes RF, et al. Phosphonate appended porphyrins as versatile chemosensors for selective detection of trinitrotoluene. Anal Chem. 2015;87(8):4515–4522. doi: 10.1021/acs.analchem.5b00772
  32. Kim TH, Lee BY, Jaworski J, et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano. 2011;5(4):2824–2830. doi: 10.1021/nn103324p
  33. Mohasseb A. Adsorption of tetryl on the surface of carbon nanocone: A theoretical investigation. Int J New Chem. 2019;6(4):215–223. doi: 10.22034/ijnc.2019.35796
  34. Xie C, Liu B, Wang Z, et al. Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem. 2008;80(2):437–443. doi: 10.1021/ac701767h
  35. Aguilar AD, Forzani ES, Leright M, et al. A hybrid nanosensor for TNT vapor detection. Nano Letters. 2010;10(2):380–384. doi: 10.1021/nl902382s
  36. Hwang J, Choi N, Park A, et al. Fast and sensitive recognition of various explosive compounds using Raman spectroscopy and principal component analysis. J Molecular Structure. 2013;(1039):130–136. doi: 10.1016/j.molstruc.2013.01.079
  37. Chajistamatiou A, Angelis Y, Kiousi P, et al. Discrimination of tetryl samples by gas chromatography: Isotope ratio mass spectrometry. Forensic Chem. 2019;(12):42–45. doi: 10.1016/j.forc.2018.11.006
  38. Holmgren E, Ek S, Colmsjö A. Extraction of explosives from soil followed by gas chromatography/mass spectrometry analysis with negative chemical ionization. J Chromatogr A. 2012;(1222):109–115. doi: 10.1016/j.chroma.2011.12.014
  39. Nilles JM, Connell TR, Sarah TS, Durst HD. Explosives detection using direct analysis in real time (DART) mass spectrometry. Propellants Explosives Pyrotechnics. 2010;35(5):446–451. doi: 10.1002/prep.200900084
  40. Cagan A, Schmidt H, Rodriguez JE, Eiceman GA. Fast gas chromatography-differential mobility spectrometry of explosives from TATP to Tetryl without gas atmosphere modifiers. Int J Ion Mobility Spectrometry. 2010;13(3):157–165. doi: 10.1007/s12127-010-0054-5
  41. To KC, Ben-Jaber S, Parkin IP. Recent developments in the field of explosive trace detection. ACS Nano. 2020;14(9):10804–10833. doi: 10.1021/acsnano.0c01579
  42. Lan EH, Dunn B, Zink JI. Sol-Gel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT. Chem Materials. 2000;12(7):1874–1878. doi: 10.1021/cm990726y
  43. Shaw A, Lindhome P, Calhoun RL. Electrogenerated chemiluminescence (ECL) quenching of Ru(bpy)32+ by the explosives TATP and tetryl [abstract]. J Electrochemical Soc. 2013;160(10):H782. doi: 10.1149/2.005311jes

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies