Trajectory simulations by the numerical solution of the point-mass equations of motion for 7.62 mm/.308” rifle bullets

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The understanding of the dynamics of the trajectory is important in ballistics to estimate the values of various flight variables accurately. The paper deals with the study of the fundamental principles of external ballistics, which allows to delve into the trajectory characteristics of the free flight trajectory of seven. 308” caliber bullets by numerically solving the point-mass equations of motion. Numerical solutions were performed by writing scripts in the Python programming language and using the Matplotlib library to plot simulated trajectories.

AIM: the three aims of the study were to observe the variation of CD with Mach number (Ma) of flight and calculate an average CD for each bullet under consideration. Further, solving the 3-DoF (Degrees-of-Freedom) Point-Mass trajectory equations of motion for the given bullets (along side observing the effects of range winds on the trajectory behaviour as a variable). And finally, solving the flat-fire approximation with analysis of the effects of a crosswind.

MATERIALS AND METHODS: Simulations of free-flight trajectories of seven different 7.62 mm/.308” rifle bullets (designated B0–B6) have been carried out by the numerical solution of the equations of motion. The average drag force coefficients (CD) for B0–B6 have been calculated by scaling the variation of CD with the Mach number of flight with reference to the G7 standard projectile. The Point-Mass trajectory model and its Flat-Fire approximation have been studied with and without the effect of range winds. The solutions of the systems of equations have been carried out by writing scripts in the Python programming language.

RESULTS: It is observed that an increase in the bullet weight and consequently the sectional density lowers the CD. As expected, it is seen that the bullet with the highest drag (B0) has the shortest range and lowest apogee, while lower drag bullets fly further and higher. The crossover of trajectories is observed at ~30° angle of gun elevation, which implies that the maximum range is not achieved when fired at 45°, as is the case with vacuum trajectories. Flat-fire approximation of the point-mass model was also solved to observe trajectories and crosswind deflections of the bullets when fired at <5° angles of elevation.

CONCLUSION: This project presents the numerical solution of equations of motion of the Point-Mass model for a bullet fired from a gun to computationally simulate its trajectory. A group of seven 7.62 mm/.308” rifle bullets were chosen as samples to simulate free-flight trajectories. The programming language Python is well-equipped to carry out numerical solutions of systems of differential equations owing to its library of in-built functions which assists in writing an efficient script and reduces computational load. This method of solution can be applied with suitable modifications in the field of forensic ballistics for the reconstruction of bullet trajectories and to form a conclusion based on the available evidence from a crime scene.

About the authors

Soham Gangopadhyay

National Institute of Criminology and Forensic Science

Email: rrohatgi2020@gmail.com

Post Graduate Student, MSc Forensic Science

India, New Delhi

Richa Rohatgi

National Institute of Criminology and Forensic Science

Author for correspondence.
Email: rrohatgi2020@gmail.com
ORCID iD: 0000-0001-5514-953X
Scopus Author ID: 57189091058

MSc, PhD, Assistant Professor, Forensic Science

India, New Delhi

References

  1. Warlow T.A. Firearms, the law, and forensic ballistics. 2nd ed. Boca Raton, Fla: CRC Press; 2005. 456 p.
  2. McCoy R.L. Modern exterior ballistics: the launch and flight dynamics of symmetric projectiles. Rev. 2nd ed. Atglen, PA: Schiffer Pub; 2012.
  3. 62X51 mm 147 Grain FMJ Lead Core M80 ball range grade ammunition. Available from: https://fedarm.com/product/7-62x51-308-win-147-grain-fmj-lead-core-m80-ball-range-grade-ammunition/. Accessed: Apr. 15, 2022.
  4. CALIBER/7.62MM 150 GR. FMJBT. Sierra Bullets. Available from: https://www.sierrabullets.com/product/30-caliber-7-62mm-150-gr-fmjbt/. Accessed: Apr. 15, 2022.
  5. CALIBER/7.62MM 150 GR. HPBT MATCHKING. Sierra Bullets. Available from: https://www.sierrabullets.com/product/30-caliber-7-62mm-150-gr-hpbt-matchking/. Accessed: Apr. 15, 2022.
  6. CALIBER/7.62MM 150 GR. SBT. Sierra Bullets. Available from: https://www.sierrabullets.com/product/30-caliber-7-62mm-150-gr-sbt/. Accessed: Apr. 15, 2022.
  7. CALIBER/7.62MM 165 GR. SBT. Sierra Bullets. Available from: https://www.sierrabullets.com/product/30-caliber-7-62mm-165-gr-sbt./ Accessed: Apr. 15, 2022.
  8. CALIBER/7.62MM 168 GR. TMK. Sierra Bullets. Available from: https://www.sierrabullets.com/product/30-caliber-7-62mm-168-gr-tmk/. Accessed: Apr. 15, 2022.
  9. CALIBER/7.62MM 175 GR. HPBT MATCHKING. Sierra Bullets. Available from: https://www.sierrabullets.com/product/30-caliber-7-62mm-175-gr-hpbt-matchking/. Accessed: Apr. 15, 2022.
  10. Ballistic Coefficients. Sierra Bullets. Available from: https://www.sierrabullets.com/resources/ballistic-coefficients/. Accessed: May 06, 2022.
  11. Courtney E., Morris C., Courtney M. Accurate measurements of free flight drag coefficients with amateur doppler radar. arXiv. 2016. Available from: http://arxiv.org/abs/1608.06500. Accessed: May 01, 2022.
  12. Courtney E., Courtney A., Courtney M. Methods for accurate free flight measurement of drag coefficients. arXiv. 2015. Available from: http://arxiv.org/abs/1503.05504. Accessed: May 01, 2022.
  13. Litz B. Applied ballistics for long-range shooting. 3rd ed. Cedar Springs, Michigan: Applied Ballistics LLC; 2015.
  14. Litz B. Aerodynamic drag modelling for ballistics. Applied Ballistics; 2016.
  15. Gangopadhyay S. System of axes for ballistic range. 2022.
  16. Savastre A., Cârceanu I., Bolojan A. Theoretical evaluation of drag coefficient for different geometric configurations of ballistic caps for an experimental 30×165 mm AP-T projectile. J Mil Technol. 2020. Vol. 3, N 2. Р. 37–42. doi: 10.32754/JMT.2020.2.06
  17. Surdu G., Slamnoiu G., Sava A.C., Vedinas I. Comparative evaluation of projectile’s drag coefficient using analytical and numerical methods. Review of the Air Force Academy. 2015. Vol. 1, N 28. Р. 101.
  18. Siva Krishna Reddy D., Padhy B.P., Reddy B.K. Flat-fire trajectory simulation of AK-47 assault rifle 7.82-mm Bullet / Vijayaraghavan L., Reddy K.H., Jameel Basha S.M., eds. Emerging trends in mechanical engineering. Singapore: Springer Singapore; 2020. Р. 415–425. doi: 10.1007/978-981-32-9931-3_40

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Pic.1

Download (14KB)
3. Pic.2

Download (22KB)
4. Pic.3

Download (24KB)
5. Pic.4

Download (26KB)
6. Pic.5

Download (25KB)
7. Pic.6

Download (19KB)
8. Pic.7

Download (23KB)
9. Fig. 1. System of axes for ballistic range [15].

Download (84KB)
10. Fig. 2. CD vs. Ma, B0.

Download (105KB)
11. Fig. 3. CD vs. Ma, B6.

Download (105KB)
12. Fig. 4. Free-flight trajectory of bullets B0 to B6, fired at 35°.

Download (157KB)
13. Fig. 5. B2 fired at multiple angles (a).

Download (167KB)
14. Fig. 6. B2 fired at multiple angles (b).

Download (190KB)
15. Fig. 7. B2 fired with no wind and only tailwind.

Download (122KB)
16. Fig. 8. B3 fired with multiple wind configurations (up-range view).

Download (169KB)
17. Fig. 9. Flat-fire trajectory of bullets B0 thru B6.

Download (146KB)
18. Fig. 10. B2 fired at multiple angles (flat-fire).

Download (127KB)
19. Fig. 11. Multiple trajectories at 15 fps crosswind (b: up-range view).

Download (156KB)

Copyright (c) 2022 Gangopadhyay S., Rohatgi R.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies