Assessment of the applicability of primarily identified natural luminescent bacteria, isolated from the azov and the black seas, to determine the antimicrobial activity of antibiotics

Cover Page

Cite item

Full Text

Abstract

Five isolates of luminous bacteria from aquatic organisms of the Azov and the Black Seas were isolated. The study of morphological, cultural, physiological and biochemical properties showed that isolates M1 and M4 were the representatives of the species harveyi, and isolates Fb, Sh1, and B were the representatives of the species P. leiognathi. It was found that the strain P. leiognathi Sh1 was the most sensitive to zinc sulfate when studying its effect on allocated luminescent bacteria. The effective concentration that reduced the bioluminescent index (BLI) by 50% (EC50) for zinc sulfate, when exposed to the test strain, was 4,0 ± 0,1 μg/ml. Experimental data allowed to consider the strain P. leiognathi Sh1 to be the test-object for determining the antimicrobial activity of benzylpenicillin, gentamicin, streptomycin, tetracycline and ceftriaxone. The results of evaluating the effect of antibiotics on the test object, revealed that after 15 minutes of incubation, the BLI values decreased by 50% only in samples containing benzylpenicillin, gentamicin, and tetracycline. Their EC50 were 500.0, 283.0 and 28.5 μg/ml respectively. It was found that the exposure of test-strain to all antibacterial agents demonstrated resulted in decrease in BLI by 100% as compared to the control values. Strain P. leiognathi Sh1 can be used as a test-object for determining the antimicrobial activity of antibiotics.

About the authors

Sergey L. Safronyuk

Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University

Author for correspondence.
Email: pharmalab01@mail.ru

Senior Lecturer, Department of Medical and Pharmaceutical Chemistry

Russian Federation, Simferopol

Vlada V. Samolyuk

Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University

Email: vlada.samolyuk.98@mail.ru

Postgraduate student, Department of Medical and Pharmaceutical Chemistry

Russian Federation, Simferopol

Alena M. Milova

Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University

Email: MilovaAM21@gmail.com

3nd year student of the 2nd Medical Faculty

Russian Federation, Simferopol

Yuliia Yu. Havrichenko

Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University

Email: shkered.jolie@gmail.com

Assistant of the Department of Medical and Pharmaceutical Chemistry

Russian Federation, Simferopol

Andrey M. Katsev

Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University

Email: katsev@mail.ru

Doctor of Biological Sciences, Professor, Head of the Department of Medical and Pharmaceutical Chemistry

Russian Federation, Simferopol

References

  1. Medvedeva SE, Tyulkova NA, Kuznetsov AM, Rodicheva EK. Bioluminescent bioassays based on luminous bacteria. Journal of Siberian Federal University. 2009;2(4):418–452.
  2. Zarubin M, Belkin S, Ionescu M, Genin A. Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc Natl Acad Sci USA. 2012;109(3):853–857. https://doi.org/10.1073/pnas.1116683109.
  3. Baumann P, Baumann L, Bang SS, Woolkalis MJ. Revaluation of the taxonomy of Vibrio, Beneckea and Photobacterium: abolition of the genus Beneckea. Curr Microbiol. 1980;4(3):127–132. https://doi.org/10.1007/BF02602814.
  4. Baumann P, Baumann L. The marine gram-negative eubacteria: Genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes. In The procariotes. Berlin: Springer; 1981;1302–1331.
  5. Baumann P, Baumann L, Woolkalis MJ, Bang SS. Evolutionary relationships in Vibrio and Photobacterium. A basis for a natural classification. Annu Rev Microbiol. 1983;37:363–398. https://doi.org/10.1146/annurev.mi. 37.100183.002101.
  6. Futra D, Heng LY, Surif S, et al. Microencapsulated Aliivibriofischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. Sensors (Basel). 2014;14(12):23248–23268. https://doi.org/1010.3390/s141223248.
  7. Jarque S, Masner P, Klánová J, et al. Bioluminescent Vibrio fischeri assays in the assessment of seasonal and spatial patterns in toxicity of contaminated river sediments. Front Microbiol. 2016;7:1738. https://doi.org/10.3389/fmicb.2016.01738.
  8. Kurvet I, Juganson K, Vija H, et al. Toxicity of nine (Doped) rare earth metal oxides and respective individual metals to aquatic microorganisms Vibrio fischeri and Tetrahymena thermophila. Materials (Basel). 2017;10(7):754. https://doi.org/10.3390/ma10070754.
  9. Shao Y, Wu LL, Gao HW, Wang F. Effect of soluble sulfide on the activity of luminescent bacteria. Molecules. 2012;17(5):6046–6055. https://doi.org/10.3390/ molecules17056046.
  10. Сафронюк С.Л., Гавриченко Ю.Ю., Кацев А.М. Использование биолюминесцентных бактерий для оценки антибиотических эффектов лекарственных препаратов // Вестник ВГУ, серия: Химия. Биология. Фармация. – 2018. – № 1. – C. 194–203. [Safronyuk SL, Gavrichenko YuYu, Katsev AM. Applying of the bioluminescent bacteria for estimation of antibiotic effects of medicinal preparations. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2018;(1):194–203. (In Russ.)]
  11. Wang D, Gu Y, Zheng M, et al. Mechanism-based QSTR model for acute to chronic toxicity extrapolation: A case study of antibiotics on luminous bacteria. Scientific Reports. 2017;7:6022. https://doi.org/10.1038/s41598-017-06384-9.
  12. Gui Q, Lawson T, Shan S, et al. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors (Basel). 2017;17(7):1623. https://doi.org/10.3390/s17071623.
  13. Зверев В.В. Микробиология, вирусология. Руководство к практическим занятиям / под ред. В.В. Зверева, М.Н. Бойченко. – М.: Геотар-Медиа, 2017. [Zverev VV. Mikrobiologiya, virusologiya. Rukovodstvo k prakticheskim zanyatiyam. Ed. by V.V. Zverev, M.N. Bojchenko. Moscow: Geotar-Media; 2017. (In Russ.)]
  14. Cафронюк С.Л., Шарипов Э.Т., Кацев А.М. Идентификация светящихся бактерий, выделенных из акватории Черного и Азовского морей // Аспирантский вестник Поволжья. – 2017. – № 5-6. – С. 19–23. [Safronyuk SL, Sharipov ET, Katsev AM. Identification of luminous bacteria isolated from the Black and the Azov seas. Aspirantskij vestnik Povolzhiya. 2017;(5-6):19–23. (In Russ.)]
  15. Дерябин Д.Г. Бактериальная биолюминесценция: фундаментальные и прикладные аспекты. – Новосибирск: Наука, 2009. [Deryabin DG. Bakterial’naya biolyuminescenciya: fundamental’nye I prikladnye aspekty. Novosibirsk: Nauka; 2009. (In Russ.)]
  16. Makemson JC, Fulayfil NR, Landry W, et al. Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol. 1997;47(4):1034–1039. https://doi.org/10.1128/AEM.69.11.6938-6942.2003.
  17. Кацев А.М. Ферментативная активность светящихся бактерий Черного и Азовского морей и их антиоксидантная защита // Ученые записки Таврического национального университета им. В.И. Вернадского. – 2014. – Т. 27(66). – № 3. – С. 184–193. [Katsev AM. Enzyme activity of bioluminescent bacteria from Black and Azov seas and their antioxidant defense. Uchenye zapiski Tavricheskogo nacional’nogo universiteta imeni V.I. Vernadskogo. Seriya: biologiya, himiya. 2014;27(3):184–193. (InRuss.)]
  18. Концевая И.И. Микробиология: культивирование и рост бактерий. Практическое руководство для студ. биологич. спец. вузов. – Чернигов: ДеснаПолиграф, 2017. [Koncevaya II. Microbiology: the cultivation and growth of bacteria. A practical guide for students of biological specialized universities. Chernigov: Desna Poligraf; 2017. (In Russ.)]
  19. Bergey’s Manual® of Systematic Bacteriology. Volume Two: The Proteobacteria, Part B: The Gammaproteobacteria. Ed. by G. Garrity. Springer US; 2005. https://doi.org/10.1007/0-387-28022-7.
  20. Jiang L, Lin Z, Hu X, Yin D. Toxicity prediction of antibiotics on luminescent bacteria, Photobacterium phosphoreum, based on their quantitative structure-activity relationship models. Bull Environ Contam Toxicol. 2010;85(6):550–555. https://doi.org/10.1007/s00128-010-0157-z.
  21. Регистр лекарственных средств России: Энциклопедия лекарств. – Москва, РЛС, 2009. [Registr lekarstvennyh sredstv Rossii: Enciklopediya lekarstv. – Mosсow: RLS; 2009. (In Russ.)]
  22. Long S, Yang Y, Pavlostathis SG, et al. Toxicity of tetracycline and its transformation products to a phosphorus removing Shewanella strain. Chemosphere. 2020;246:125681. https://doi.org/10.1016/j.chemosphere.2019.125681.
  23. Государственная фармакопея Российской Федерации. XIV издание. – М., 2018. – Т. 1. [Gosudarstvennaya farmakopeya Rossijskoj Federacii. XIV izdanie. Moscow; 2018. Vol. 1. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kinetics of the luciferase reaction of isolates

Download (120KB)
3. Fig. 2. The effect of various concentrations of zinc sulfate on the luminescence of natural luminous bacteria

Download (83KB)
4. Fig. 3. The effect of antibiotic solutions on the test-strain P. leiognathi Sh1 after 15 minutes of incubation

Download (104KB)
5. Fig. 4. The effect of antibiotic solutions on the test strain P. leiognathid Sh1 after 18 hours of incubation

Download (83KB)

Copyright (c) 2020 Safronyuk S.L., Samolyuk V.V., Milova A.M., Havrichenko Y.Y., Katsev A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).