Impact of endothelial dysfunction and myocardial fibrosis on prognosis in patients with chronic heart failure after myocardial infarction
- Authors: Trusov Y.А.1
-
Affiliations:
- Samara State Medical University
- Issue: Vol 25, No 3 (2025)
- Pages: 22-27
- Section: CARDIOLOGY
- URL: https://journals.rcsi.science/2410-3764/article/view/315110
- DOI: https://doi.org/10.35693/AVP681776
- ID: 315110
Cite item
Full Text
Abstract
Today, a promising direction for determining the prognosis of chronic heart failure (CHF) and its further clinical course is the study of predictors that reflect the pathogenesis of heart failure.
Endothelial dysfunction is an independent predictor of the risk of cardiovascular events. Today, it is becoming more obvious that myocardial fibrosis plays a significant role in the pathogenesis of CHF in patients with myocardial infarction. Myocardial fibrosis is correlated with increased arrhythmias, hospitalization, and mortality in heart failure.
The author searched for publications in the electronic databases PubMed, Web of Science, Google Scholar and ELibrary. The review article analyzes the prognostic value of endothelial dysfunction and myocardial fibrosis in patients with CHF who have had a myocardial infarction.
There are two main histological forms of reactive fibrosis, interstitial and perivascular, which often coexist. Interstitial fibrosis is associated with chronic stressors. Perivascular fibrotic tissue is rich in inflammatory cell infiltrate and is more pronounced in conditions with predominant endothelial damage. Differentiating the effects of interstitial and perivascular fibrosis is difficult because these processes usually coexist.
Full Text
##article.viewOnOriginalSite##About the authors
Yurii А. Trusov
Samara State Medical University
Author for correspondence.
Email: yu.a.trusov@samsmu.ru
ORCID iD: 0000-0001-6407-3880
MD, cardiologist at the SamSMU Clinics, assistant at the Department of Propaedeutic Therapy with a course in cardiology
Russian Federation, SamaraReferences
- Polyakov DS, Fomin IV, Belenkov YuN, et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4-14. [Поляков Д.С., Фомин И.В., Беленков Ю.Н., и др. Хроническая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПОХА-ХСН. Кардиология. 2021;61(4):4-14]. doi: 10.18087/cardio.2021.4.n1628
- Zile MR, Baicu CF, Ikonomidis JS, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131(14):1247-59. doi: 10.1161/CIRCULATIONAHA.114.013215
- Yuyun MF, Kinlay S, Singh JP, Joseph J. Are arrhythmias the drivers of sudden cardiac death in heart failure with preserved ejection fraction? A review. ESC Heart Fail. 2023;10(3):1555-1569. doi: 10.1002/ehf2.14248
- Kanagala P, Cheng ASH, Singh A, et al. Relationship Between Focal and Diffuse Fibrosis Assessed by CMR and Clinical Outcomes in Heart Failure With Preserved Ejection Fraction. JACC Cardiovasc Imaging. 2019;12(11 Pt 2):2291-2301. doi: 10.1016/j.jcmg.2018.11.031
- Asgari M, Latifi N, Heris HK, et al. In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Scientific reports. 2017;7(1):1-10. doi: 10.1038/s41598-017-01476-y
- Echegaray K, Andreu I, Lazkano A, et al. Role of Myocardial Collagen in Severe Aortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure. Rev Esp Cardiol (Engl Ed). 2017;70(10):832-840. doi: 10.1016/j.rec.2016.12.038
- Kasner M, Westermann D, Lopez B, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol. 2011;57(8):977-85. doi: 10.1016/j.jacc.2010.10.024
- Okayama K, Azuma J, Dosaka N, et al. Hepatocyte growth factor reduces cardiac fibrosis by inhibiting endothelial-mesenchymal transition. Hypertension. 2012;59(5):958-65. doi: 10.1161/HYPERTENSIONAHA.111.183905
- Kramann R, Schneider RK, DiRocco DP, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell stem cell. 2015;16(1):51-66. doi: 10.1016/j.stem.2014.11.004
- Nevers T, Salvador AM, Velazquez F, et al. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J Exp Med. 2017;214(11):3311-3329. doi: 10.1084/jem.20161791
- Szardien S, Nef HM, Voss S, et al. Regression of cardiac hypertrophy by granulocyte colony-stimulating factor-stimulated interleukin-1β synthesis. Eur Heart J. 2012;33(5):595-605. doi: 10.1093/eurheartj/ehr434
- Treibel TA, Kozor R, Schofield R, et al. Reverse myocardial remodeling following valve replacement in patients with aortic stenosis. J Am Coll Cardiol. 2018;71(8):860-871. doi: 10.1016/j.jacc.2017.12.035
- López B, González A, Querejeta R, et al. Galectin-3 and histological, molecular and biochemical aspects of myocardial fibrosis in heart failure of hypertensive origin. Eur J Heart Fail. 2015;17(4):385-92. doi: 10.1002/ejhf.246
- López B, González A, Ravassa S, et al. Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J Am Coll Cardiol. 2015;65(22):2449-2456. doi: 10.1016/j.jacc.2015.04.026
- Martos R, Baugh J, Ledwidge M, et al. Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail. 2009;11(2):191-7. doi: 10.1093/eurjhf/hfn036
- Ontario Health (Quality). Use of B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) as diagnostic tests in adults with suspected heart failure: a health technology assessment. Ont Health Technol Assess Ser. 2021;21(2):1-125. PMCID: PMC8129637
- Hendricks S, Dykun I, Balcer B, et al. Higher BNP/NT-pro BNP levels stratify prognosis equally well in patients with and without heart failure: a meta-analysis. ESC Heart Fail. 2022;9(5):3198-3209. doi: 10.1002/ehf2.14019
- Chaikijurajai T, Tang WH. Reappraisal of inflammatory biomarkers in heart failure. Curr Heart Fail Rep. 2020;17(1):9-19. doi: 10.1007/s11897-019-00450-1
- Diao K. Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J Cardiovasc Magn Reson. 2017;18(1):1-11. doi: 10.1186/s12968-016-0313-7
- Rommel KP, Von Roeder M, Latuscynski K, et al. Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2016;67(15):1815-1825. doi: 10.1016/j.jacc.2016.02.018
- Schelbert EB, Fridman Y, Wong TC, et al. Temporal Relation Between Myocardial Fibrosis and Heart Failure With Preserved Ejection Fraction: Association With Baseline Disease Severity and Subsequent Outcome. JAMA Cardiol. 2017;2(9):995-1006. doi: 10.1001/jamacardio.2017.2511
- Zhang X, Yang S, Hao S, et al. Myocardial fibrosis and prognosis in heart failure with preserved ejection fraction: a pooled analysis of 12 cohort studies. Eur Radiol. 2024;34(3):1854-1862. doi: 10.1007/s00330-023-10218-w
- Yang JH, Obokata M, Reddy YNV, et al. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22(3):432-441. doi: 10.1002/ejhf.1671
- Lin X, Wu G, Wang S, Huang J. The prevalence of coronary microvascular dysfunction (CMD) in heart failure with preserved ejection fraction (HFpEF): a systematic review and meta-analysis. Heart Fail Rev. 2024;29(2):405-416. doi: 10.1007/s10741-023-10362-x
- Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med. 2020;12(10):e10865. doi: 10.15252/emmm.201910865
- Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263-71. doi: 10.1016/j.jacc.2013.02.092
- Westermann D, Lindner D, Kasner M, et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail. 2011;4(1):44-52. doi: 10.1161/CIRCHEARTFAILURE.109.931451
- Waddingham MT, Sonobe T, Tsuchimochi H, et al. Diastolic dysfunction is initiated by cardiomyocyte impairment ahead of endothelial dysfunction due to increased oxidative stress and inflammation in an experimental prediabetes model. J Mol Cell Cardiol. 2019;137:119-131. doi: 10.1016/j.yjmcc.2019.10.005
- Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res. 2020;116(6):1101-1112. doi: 10.1093/cvr/cvz336
- Krüger M, Kötter S, Grützner A, et al. Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res. 2009;104(1):87-94. doi: 10.1161/CIRCRESAHA.108.184408
- Vitiello D, Harel F, Touyz RM, et al. Changes in cardiopulmonary reserve and peripheral arterial function concomitantly with subclinical inflammation and oxidative stress in patients with heart failure with preserved ejection fraction. Int J Vasc Med. 2014;2014:917271. doi: 10.1155/2014/917271
- Klimczak-Tomaniak D, Haponiuk-Skwarlińska J, Kuch M, Pączek L. Crosstalk between microRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int J Mol Sci. 2022;23(23):15013. doi: 10.3390/ijms232315013
- Anusruti A, Xuan Y, Gào X, et al. Factors associated with high oxidative stress in patients with type 2 diabetes: a meta-analysis of two cohort studies. BMJ Open Diabetes Res Care. 2020;8(1):e000933. doi: 10.1136/bmjdrc-2019-000933
- Premer C, Kanelidis AJ, Hare JM, Schulman IH. Rethinking Endothelial Dysfunction as a Crucial Target in Fighting Heart Failure. Mayo Clinic Proceedings: Innovations, Quality & Outcomes. 2019;3(1):1-13. doi: 10.1016/j.mayocpiqo.2018.12.006
Supplementary files
