Experimental evaluation of the galvanophoretic dentin nanoimpregnation for recurrent caries prevention

Cover Page

Cite item

Full Text

Abstract

Aim – to study the dentine galvanophoretic impregnation with nanoparticles of copper–calcium hydroxide (CCH) in the teeth with carious cavities.

Material and methods. The study was conducted on 21 teeth removed for various medical indications, with a concomitant diagnosis "dental caries". After mechanical treatment, the cavities were washed with saline solution, then CCH paste was placed on the cavity floor, covered with aluminum foil, drained and isolated with temporary fillings. To maintain the osmotic balance, the teeth were placed in a laboratory model: a plastic bath with saline solution and a melamine sponge, for a period of 1, 14 and 30 days. Then the longitudinal teeth sections were prepared for the electron microscopic examination.

Results. During the CCH galvanophoresis, the dentine impregnation with copper nanoparticles in the area of cavity floor occurred already during the first day of the procedure. The penetration depth reached 10.1 microns. The maximum depth of penetration of particles into the dentin (up to 30 microns) was detected after the 30-days-galvanophoresis. The maximum values of the diffusion coefficient and its velocity were recorded after the first day. With an increase in the time of galvanophoresis to 14 and 30 days, these indicators decreased.

Conclusion. The described method may be used as an option of choice for the prevention of recurrent dental caries, especially in the presence of deep cavities.

About the authors

Aleksandra R. Bessudnova

Tver State Medical University

Author for correspondence.
Email: bessudnova.aleksa@yandex.ru
ORCID iD: 0000-0001-9565-7133

a postgraduate student of the Department of Periodontology

Russian Federation, Tver

Vitalii A. Rumyantsev

Tver State Medical University

Email: rumyancev_v@tvgmu.ru
ORCID iD: 0000-0001-6045-3333

PhD, Professor, Head of the Department of Periodontology

Russian Federation, Tver

Georgii A. Frolov

National University of Science and Technology "MISIS"

Email: georgifroloff@yandex.ru
ORCID iD: 0000-0003-1460-6030

PhD, Associate professor of the Department of Physical Chemistry

Russian Federation, Moscow

Alisa V. Blinova

Tver State Medical University

Email: blinova-alisa@mail.ru
ORCID iD: 0000-0002-4315-163X

a postgraduate student of the Department of Periodontology

Russian Federation, Tver

Vladimir V. Bityukov

Tver State Medical University

Email: bitykova_l@mail.ru
ORCID iD: 0000-0003-0479-4971

assistant of the Department of Dentistry

Russian Federation, Tver

References

  1. Chisini LA, Collares K, Cademartori MG, et al. Restorations in primary teeth: a systematic review on survival and reasons for failures. Int J Paediatr Dent. 2018;28(2):123-139. doi: 10.1111/ipd.12346
  2. Askar H, Krois J, Göstemeyer G, et al. Secondary caries: what is it, and how it can be controlled, detected, and managed? Clin Oral Investig. 2020;24(5);1869-1876. doi: 10.1007/s00784-020-03268-7
  3. Berkowitz RJ, Amante A, Kopycka-Kedzierawski DT, et al. Dental caries recurrence following clinical treatment for severe early childhood caries. Pediatr Dent. 2011;33(7):510-514.
  4. Brouwer F, Askar H, Paris S, et al. Detecting secondary caries lesions: A systematic review and meta-analysis. J Dent Res. 2016;95(2):143-151. doi: 10.1177/0022034515611041
  5. Pine CM, Adair PM, Burnside G, et al. Dental recur randomized trial to prevent caries recurrence in children. J Dent Res. 2020;99(2):168-174. doi: 10.1177/0022034519886808
  6. Zhang N, Ma Y, Weir MD, et al. Current Insights into the Modulation of Oral Bacterial Degradation of Dental Polymeric Restorative Materials. Materials (Basel). 2017;10(5):507. doi: 10.3390/ma10050507
  7. Zorina OA, Petrukhina NB, Tupitsin AA, et al. Diagnostic and prognostic significance of the hypoxia-dependent factor-1α for the development of a carious lesion. Stomatologiya. 2019;98(4):15-19. (In Russ.). [Зорина О.А., Петрухина Н.Б., Тупицин А.А., и др. Диагностическая и прогностическая значимость гипоксия-зависимого фактора-1α для развития кариозного поражения. Стоматология. 2019;98(4):15-19]. doi: 10.17116/stomat20199804115
  8. Ricucci D, Siqueira JF Jr. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod. 2010;36(8):1277-1288. doi: 10.1016/j.joen.2010.04.007
  9. Schwendicke F, Kern M, Blunck U, et al. Marginal integrity and secondary caries of selectively excavated teeth in vitro. J Dent. 2014;42(10):1261-1268. doi: 10.1016/j.jdent.2014.08.002
  10. Blinova AV, Rumyantsev VA. Nanotechnologies as the reality of modern dentistry (literature review). Endodontics Today. 2020;18(2):56-61. (In Russ.). [Блинова А.В., Румянцев В.А. Нанотехнологии – реальность современной стоматологии (обзор литературы). Эндодонтия Today. 2020;18(2):56-61]. doi: 10.36377/1683-2981-2020-18-2-56-61
  11. Meto A, Droboniku E, Blasi E, et al. Copper-Calcium Hydroxide and Permanent Electrophoretic Current for Treatment of Apical Periodontitis. Materials (Basel). 2021;14(3):678. doi: 10.3390/ma14030678
  12. Rumyantsev VA, Frolov GA, Blinova AV, et al. Electron microscopic properties of a new antimicrobial nanodrug based on copper-calcium hydroxide compound. Avicenna Bulletin. 2021;23(4):532-41. (In Russ.). [Румянцев В.А., Фролов Г.А., Блинова А.В., и др. Электронно-микроскопические свойства нового противомикробного нанопрепарата на основе гидроксида меди-кальция. Вестник Авиценны. 2021;23(4):532-41]. doi: 10.25005/2074-0581-2021-23-4-532-541
  13. Aminsobhani M, Bolhari B, Dorost B, et al. Measurement of Copper ion Extrusion from the Apex of Human Teeth with Single Canals Following of Electrophoresis. Eur Endod J. 2021;6(2):226-229. doi: 10.14744/eej.2020.61687
  14. Lenzi TL, Guglielmi Cde A, Arana-Chavez VE, et al. Tubule density and diameter in coronal dentin from primary and permanent human teeth. Microsc Microanal. 2013;19(6):1445-1449. doi: 10.1017/S1431927613012725
  15. Zablotskaya MV, Mitronin AV, Zablotskaya NV. Treatment of acute apical periodontitis using depophoresis and cold argon plasma. Smolensk medical almanac. 2018;1:109-112. (In Russ.). [Заблоцкая М.В., Митронин А.В., Заблоцкая Н.В. Лечение острого апикального периодонтита с применением метода депофореза и холодной аргоновой плазмы. Смоленский медицинский альманах. 2018;1:109-112].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Experimental laboratory model (A), tooth sections with carious cavities (B).

Download (128KB)
3. Figure 2. Results of transmission electron microscopy (A) and X-ray fluorescence elemental analysis (B) of the preparation Cupral®.

Download (223KB)
4. Figure 3. Electronic microphotographs of tooth sections after galvanophoresis procedures of the preparation Cupral® during A – 1 day, B – 14 days, C – 30 days.

Download (291KB)
5. Figure 4. Concentration of copper-nanoparticles in the tooth dentine during galvanophoresis of Cupral® paste for different time periods: red curve – 1 day, yellow curve – 14 days, purple curve – 30 days.

Download (111KB)

Copyright (c) 2023 Bessudnova A.R., Rumyantsev V.A., Frolov G.A., Blinova A.V., Bityukov V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).