From Zero-Shot to Iterative Prompting: Evaluating LLMs in Automated Abstract Generation
- Authors: Timokhov A.D.1
-
Affiliations:
- Issue: No 5 (2025)
- Pages: 320-353
- Section: Articles
- URL: https://journals.rcsi.science/2409-8698/article/view/379156
- DOI: https://doi.org/10.25136/2409-8698.2025.5.74593
- EDN: https://elibrary.ru/QGPACV
- ID: 379156
Cite item
Full Text
Abstract
This study evaluates the performance and nuances of several large language models — ChatGPT, Gemini, Mistral, and Llama — focusing on their capacity to generate abstracts for academic articles in Russian and English. The analysis explores how these models perform in terms of linguistic quality and cross-linguistic adaptation, as well as their adherence to established conventions of different academic traditions. The study also evaluates both the overall performance and the practical relevance of different prompting approaches, focusing on zero-shot and iterative prompting. Drawing on a corpus of 100 academic articles published between 2018 and 2023 across humanities and technical fields, the research examines the ability of these models to handle a wide spectrum of subject matter and genre-specific demands. Special attention is given to identifying differences between models, both in terms of stylistic and structural preferences and in the context of cross-linguistic adaptation when generating titles in Russian and English. The research applies unified zero-shot prompts based on concise summaries of the original articles, followed by iterative prompting aimed at improving initial outputs by addressing identified shortcomings. The generated abstracts are evaluated according to structural coherence, terminological accuracy, stylistic conformity, completeness, and informational relevance. The findings indicate that all tested models are generally capable of producing abstracts consistent with essential genre-specific and stylistic conventions, yet each model exhibits distinctive generation strategies. While zero-shot prompting typically produces acceptable results in both languages, it often causes issues related to insufficient detail, accuracy, and adherence to stylistic norms in Russian. Conversely, iterative prompting significantly improves abstract quality by addressing these specific shortcomings. This paper offers the first comparative multilingual analysis of several large language models within the context of academic discourse, introducing linguistic community and academia to an emerging type of research material — AI-generated texts, as opposed to conventionally authored texts produced directly by humans. The findings confirm that large language models, given proper guidance, can generate academic abstracts comparable in quality to those written by humans, though their use requires careful editorial oversight to ensure full compliance with academic standards.
About the authors
Alexey Dmitrievich Timokhov
Email: timokhovad@mgpu.ru
ORCID iD: 0000-0003-4626-9120
References
- Вахтерова Е. В. Исследование академического дискурса в отечественной и зарубежной лингвистике // Глобус. 2021. № 1 (58). С. 22-26. EDN: JNENZS. doi: 10.52013/2658-5197-58-1-7.
- Зубкова Л. И. Конститутивные признаки академического дискурса // Известия ВГПУ. 2009. № 5. С. 28-32. EDN: LPAWPB.
- Попова Т. П. Некоторые особенности академического дискурса // Известия ВГПУ. 2015. № 7 (102). С. 85-91. EDN: UZBHWJ.
- Тимохов А. Д. Нейрокорпус заголовков и аннотаций к научным публикациям на русском и английском языках [Электронный ресурс]. URL: https://drive.google.com/drive/u/1/folders/1yHUHT1mwRo42HxMOBXfuCYOU1TQ01noP (дата обращения: 19.05.2025).
- Хутыз И. П. Особенности конструирования академического дискурса: ориентация на читателя / автора // Вестник Майкопского государственного технологического университета. 2015. № 1. С. 77-82. EDN: TRZRRJ.
- Хутыз И. П. Лингвокультурные традиции в пространстве академического дискурса: особенности конструирования // Вестник Московского городского педагогического университета. Серия: Филология. Теория языка. Языковое образование. 2016. № 3 (23). С. 86-93. EDN: WLSIZF.
- Черкунова М. В. Малоформатный текст: к определению понятия (теоретические аспекты) // Известия Саратовского университета. Новая серия. Серия Филология. Журналистика. 2022. № 3. С. 248-253. EDN: BTSHTN. doi: 10.18500/1817-7115-2022-22-3-248-253.
- Шпенюк И. Е. Научно-академический дискурс как институциональный тип дискурса // Известия Гомельского государственного университета им. Ф. Скорины. 2016. № 4 (97). С. 132-137. EDN: WWIFGV.
- Шутова Н. М., Померанец И. Б. Аннотация к научной статье на английском и русском языках: сопоставительный анализ и проблемы перевода // Филологические науки. Вопросы теории и практики. 2020. № 10. С. 318-324. EDN: GUGPZI. doi: 10.30853/filnauki.2020.10.62.
- Силкина О. М. Аннотация как жанр научного дискурса // Вестник ЮУрГУ. Серия: Лингвистика. 2018. № 3. С. 70-76. EDN: YAAWTR. doi: 10.14529/ling180312.
- Тивьяева И. В., Кузнецова Д. Л. Компаративный анализ структурно-содержательной организации аннотаций к русскоязычным и англоязычным научным статьям // Актуальные проблемы филологии и педагогической лингвистики. 2020. № 3. С. 139-152. doi: 10.29025/2079-6021-2020-3-139-152. EDN: HDACML.
- Altmäe S., Sola-Leyva A., Salumets A. Artificial intelligence in scientific writing: a friend or a foe? // Reproductive BioMedicine Online. 2023. V. 47, No 1. Pp. 3-9. doi: 10.1016/j.rbmo.2023.04.009. EDN: VWHRLW.
- Attention Is All You Need / Vaswani A., Shazeer N., Parmar N. et al. // Advances in Neural Information Processing Systems. 2017. V. 30. Pp. 5998-6008.
- Benichou L. The role of using ChatGPT AI in writing medical scientific articles // Journal of Stomatology, Oral and Maxillofacial Surgery. 2023. V. 124, No 5. Pp. 1-5. doi: 10.1016/j.jormas.2023.101456. EDN: FUZCSY.
- Bennett K. English Academic Discourse: Hegemonic Status and Implications for Translation (with particular reference to Portuguese). Lambert Academic Publishing. 2012. 284 p.
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding / Devlin J., Chang M.-W., Lee K. et al. // Proceedings of NAACL-HLT 2019. 2019. Pp. 4171-4186.
- Brown T., Mann B., Ryder N. et al. Language Models are Few-Shot Learners // Advances in Neural Information Processing Systems. 2020. V. 33. Pp. 1877-1901.
- Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in NLP / Liu P., Yuan W., Fu J. et al. // ACM Computing Surveys. 2021. V. 55, No 9. Pp. 1-35.
- On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? / Bender E. M., Gebru T., McMillan-Major A. et al. // Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. 2021. Pp. 610-623.
- On ChatGPT and beyond: How generative artificial intelligence may affect research, teaching, and practice / Peres R., Schreier M., Schweidel D. et al. // International Journal of Research in Marketing. 2023. V. 40, No 2. Pp. 269-275. doi: 10.1016/j.ijresmar.2023.03.001. EDN: LMXQWJ.
- Özcan A., Polat S. Artificial Intelligence and Chat Bots in Academic Research // Journal of Research in Social Sciences and Language. 2023. V. 3, No 2. Pp. 81-90.
- The Role of Artificial Intelligence in Scientific Writing / Kammer M. N., Gomila P., Vumbaco D. J. et al. // Journal of Clinical Case Reports, Medical Images and Health Sciences. 2023. V. 3, No 3. Pp. 1-6. doi: 10.55920/jcrmhs.2023.03.001116. EDN: XTXHCE.
- Salvagno M., Taccone F. S., Gerli A. G. Can artificial intelligence help for scientific writing? // Critical Care. 2023. V. 27, No 75. Pp. 1-5.
- Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy / Dwivedi Y. K., Kshetri N., Hughes L. et al. // International Journal of Information Management. 2023. V. 71. P. 102642. doi: 10.1016/j.ijinfomgt.2023.102642. EDN: GFXYHE.
Supplementary files

